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CONSERVATION LAWS OF LINEAR, HOMOGENEOUS SYSTEMS

By J. R. Williams
Electronics Research Center

SUMMARY

Conditions for a linear, uniform, homogeneous system to have
nonsingular quadratic invariants, formed in the usual manner from
constant metrics, are expressed in terms of properties of a
Kronecker sum in the operator. Useful tests for the existence of
such invariants are described. It is shown that system definition
in terms of these invariants is not only restricted in its appli-
cation but inconclusive. The interpretation of gquadratic invari-
ants, formed from metrics that depend on the space variable, as
conservation laws is supported both formally and by physical argu-
ments for the nonuniform system. A property of the Kronecker pro-
duct and sum, that the Kronecker product of the matricants of two
system operators is the matricant of the Kronecker sum of the opera-
tors, is then utilized to describe a useful procedure for obtain-
ing the metrics, including the constant metrics. This property
has application also in group-representation theory, and is used
to obtain a representation of the abstract group onto a group of
matrices that display the metrics defining the group.

The operator for a linear, lumped system is treated within
the framework of the theory. Techniques developed for uniform
distributed systems are found to be appropriate, and a group-
theoretical interpretation is given.

I. INTRODUCTION

In this report we present a theory of the conservation laws,
expressed as quadratic invariants, obeyed by a linear, homogeneous
system. The theory applies to a distributed system that can be
described by a matrix operator, over the field of complex numbers,
relating a state vector and its derivative in a single space vari-
able; and to a lumped-system operator relating a state vector at
two generalized ports. The distributed-system operator is allowed
to be a function of the space variable under a weak assumption of
bounded differentiability, thereby admitting nonuniformity in the
system due to any physical mechanism. The nonuniformity could be
due, for example, to nonuniform boundaries in a wave-guiding sys-
tem, material inhomogeneity, or nonuniform coupling in a single-
frequency or parametric device. New insight into the quadratic



invariants of uniform systems is gained when these are considered
in the context of the more general theory, and extended techni-
ques for their study are developed. Operators for distributed

and lumped systems are included in a unified theoretical treat-
ment. We assume that the system has a finite number of degrees of
freedom, but the fundamental results could be generalized.

Important results concerning the nonsingular quadratic invari-
ants of linear, uniform, homogeneous systems, and of linear lumped
systems, have been given by Pease (refs. 1, 2, and 3). A space
is considered to be defined by a metric, which specifies how the
length of a state vector is to be measured, and a conservation
law to be determined by each metric for which the operator becomes
rotational. Under certain conditions on the eigenvalues and
structure of the operator, the system will obey a set of conserva-
tion laws determined by linearly independent nonsingular metrics,
equal in number at least to the number of degrees of freedom of
the system. The proof of this result provides a formal procedure
for obtaining the metrics, a procedure that requires a determina-
tion of the eigenvalues, eigenvectors, and generalized eigen-
vectors of the operator. The metrics for which the operator be-
comes rotational can also be obtained by writing out and solving
the governing equations. A set of linear, homogeneous equations
is obtained, where the coefficient matrix is of squared order
compared with the operator and the metrics. Either approach can
be tedious if the operator matrix is not of small order.

Conversely, given two metrics of suitable form, a range of
distributed-system operators that become rotational for either
of these metrics can be determined. This range will in general
be narrowed if more metrics are specified. The distributed sys-
tem can be represented by a matricant — obtained by integrating
the differential equations describing the system — which relates
the state vector as a function of position to a boundary value.
The specified metrics define a group for the abstract operator,
the matricants determined by the metrics are a representation of
the abstract group onto a Lie group, and the system operators are
members of a corresponding Lie algebra. From this point of view,
systems are defined by their conservation laws. We shall discover,
however, that in general an operator is not determined uniquely
by specifying all of the metrics for which it is rotational; in
fact, the simplest class of operators for conservative systems
will be determined only within a space of dimensionality equal
to the number of degrees of freedom of the system. Most opera-
tors do not become rotational for any metric.

The coefficient matrix, obtained by writing out the equa-
tions governing the metrics, while of squared order, signifi-
cantly takes the form of a Kronecker sum. This has some practical
as well as important theoretical consequences. First of all, it
will permit us to develop a formal parallel to the theory developed




for the operator, in terms of properties of the coefficient matrix.
Existence criteria for nonsingular solutions, as well as other in-
formation about the operator and the metrics, are expressed in
terms of more accessible properties of the coefficient matrix:;

and equivalent procedures for obtaining this information for an
operator in the restricted class considered can be compared with
those available for testing the operator directly.

With the theory reformulated in this way, we shall be able
to complement the previous results by introducing metrics that
vary with the space variable, and to confirm that these are re-
guired for a definitive theory of this and the larger class of
operators. Quadratic invariants formed from such metrics, in
general, can meaningfully be interpreted as conservation laws,
and uniform systems can be considered a kind of "singularity"
for which this interpretation breaks down. These and the constant
metrics can be obtained in a way that indicates that they, as
well as the matricants, have overt group-theoretical properties.
Not only is a useful procedure for obtaining the metrics revealed,
but a representation of the abstract group explicitly in terms
of the metrics is indicated. The Kronecker sum, formed from the
distributed-system operator, will then be recognized as the opera-
tor in the corresponding Lie algebra. Such a representation will
be seen to be what is required for definitive system definition
for the uniform system as well, which can be viewed as a limiting
case when interpreting the invariants as conservation laws.

We shall also discuss briefly another class of metrics that
depend on the space variable, and that determine ranges of non-
uniform systems in a manner very similar to that in which the
constant metrics determine ranges of uniform and nonuniform sys-
tems. While there is some basis for interpreting gquadratic forms
obtained from these as conservation laws, and while similar tech-
niques for synthesis from these metrics can be employed, they have
the same limitations for system definition as do the constant
metrics.

Operators for lumped systems, giving as they do "black box"
descriptions, are less definitive in circumscribing the kinds of
systems they might describe. Their invariants have been obtained
in a manner parallel to that for distributed systems, but this as
well as the synthesis problem can in fact be reduced to the prob-
lem for uniform distributed systems. From the point of view of
group~-representation theory, this reduction in the range of sys-
tems that need be considered can be viewed as resulting from a
homomorphic mapping of the group of abstract operators for the
more general nonuniform system onto the full linear group.

The material presented in this paper, like the results ob-
tained previously, has broad applicability. So that it may be
most generally useful, the presentation is abstract. No attempt



is made to discuss sophisticated physical applications; but guide-
lines for the physical interpretation of results are indicated,
and sufficient illustrative material is included to make the theo-
retical points clear.

IXI. BASIC CONCEPTS

In this section we summarize, for review and reference, some
results concerning the quadratic invariants of linear, uniform,
homogeneous systems. The analytical techniques by which these
results have been obtained are outlined, for comparison with the
approach in Section III, and several topics are pursued in more
depth. Finally, we call attention to some tests for such invari-
ants that are equivalent to applying directly the existence
criteria that emerge in the formal development of the theory.

The converse problem to the central problem discussed in this
section is perhaps of even more fundamental importance. We re-
view current concepts in dealing with this problem in Sections IV
and VII, at more logical points in the development of this paper.

The System

We assume first a linear, distributed system having a finite
number of degrees of freedom, such as can be described by a first-
order differential equation of the form

Here x is a column matrix, an n-dimensional state vector describ-
ing the state of the system as a function of position, and R is
an nxn matrix, the system operator. The components of X are con-
sidered to be functions of the single space variable 2z, and the
time dependence has been removed. Such a system is called homo-
geneous, for Eg. (1) is homogeneous in X.

As a simple example, on a voltage-current basis,

(v
X = ) (2)
I

the system operator for a uniform transmission line of character-
istic impedance Zg, having an associated propagation constant B8,
is
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The form of Eg. (1) is not as restrictive as may at first
appear. It is not restricted altogether to the description of
systems operating at a single frequency. Furthermore, order can
be traded for dimensionality; and accordingly all systems of lin-
ear differential equations, of finite order and dimensionality,
can be reduced to this form.

Metrics and Quadratic Forms
Before discussing the conservation laws governing such a sys-

tem, we first introduce the concept of a quadratic form, or gen-
eralized inner product. This is a scalar quantity defined by

(4)
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where the superscript T denotes the complex conjugate of the trans-
posed vector, and where K is a constant nxn matrix.

In order to suggest the appropriateness of such forms for
describing physical properties of a system, we note that if the

components of x are voltage and current, as in Eq. (2), then with
0 1
K=7 (5)
1 0

the power may be written

+

* % * *
P=xKg= (VI) = 4 (V I+VI') (6)
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We postpone further consideration of the physical signifi-
cance of these forms — except to point out that K is taken to be
constant so that the interpretation of s(K) will not depend on
position. -



+ Equation (4) is a generalization of the unitary inner product
X X, for which K is taken as the identity matrix I, and provides

a more general definition of the square of the length of the vec-
tor x. The matrix K is called the metric of the space in which X
is said to be embedded, and as such can be considered to define

the space.

Appropriate Metrics and Invariant Forms

Oof particular concern to us here will be those metrics K for
which s(K) is invariant under the operation R. In other word%,
for a glven R, we are interested in those spaces, if any, in which
x can be embedded, such that its length will not vary with z.
Associated with each such K then is a conservation law, which pre-
dicates a quadratic form that remains constant as X Vvaries in
accordance with Eg. (l). We shall refer to these g‘as the metrics

appropriate to R.

For s(K) to be invariant under the operation R, it is required,
by Egs. (1) ™and (4), that

ds _ dxﬁ

dz dz

T, dx _ -
B+ rK g - i ®

K-KR) x = 0 (7)

where R+ is the transpose conjugate of R. Since Eg. (7) must hold
for any X, for X to be appropriate to R we must have

R'K= K& (8)
If K is a nonsingular solution to Eg. (8), R is sald to be K-
Hermitian.

Thus far a restriction has not in fact been imposed on the
elements of R that they may not be functions of z. On the assump-
tion that the system is uniform, however, and R is thus constant,
results have been derived concerning the existence of approprlate,
nonsingular K. Singular K have not been considered important to
the theory.

Necessary Conditions for Appropriate, Nonsingular K

For Eg. (8) to hold for some nonsingular K R+ and R must be
related by a similarity transformation, -

R' = KRK (9)



This imposes conditions on the eigenvalues and structure of R.

The n eigenvalues of R may be distinct, or some may be re-
peated. Associated with each distinct eigenvalue Bj is a linearly
independent eigenvector 5}1,1), satisfying

re (1) _ g L (E,1) (10)

A - 3~

Associated with an eigenvalue repeated m., times are m. linearly
independent eigenvectors and generalizedleigenvectors} forming
one or more chains. We shall use different subscripts to index
repeated eigenvalues when these are associated with independent
eigenvectors or separate chains, but we shall denote the number
of eigenvalues equal to any Bj by mj (i.e., if B; = B3, my = my) .
The chain of length £, 1<%i<mj, associated with the eigenvalue
Bi, consists of an eigenvector satisfying Eg. (10), and if 24>1,

of generalized eigenvectors zflrk), k =2,3,...,%, satisfying
Ba{m(lrk) Bizi.(l'k) + v}i(l,k—l) (ll)
where‘§(l’k) is said to be of rank k. A matrix is said to be

semisimple if it has a complete set of n linearly independent
eigenvectors — i.e., if the chains are all of length 1. It is
necessarily semisimple if its eigenvalues are distinct.

Now it is readily shown by Egs. (10) and (11) that if two
matrices A and B are related by a similarity transformation, A =
ﬁrl§§4 and if A has a chain x(1,k), k = 1,2,...,%;, with eigen-
value Bi, then B has a chain ggflrk), k=1,2,...24, with eigen-
value Bj.

Thus necessary conditions for the existence of a nonsingular
solution K to Eqg. (9) are that R and Bj have the same eigenvalues
and structure. But the eigenvalues of RT are the complex con-
jugates of the eigenvalues of R. Also, if R has a chain g}irk)
k=1,2,...,%2i, with eigenvalue Bji, Ej will have a chain ﬂ}l'k),
k=1,2,...,%;, with eigenvalue B¥ — where the (jﬁ(l,k))+ are
the reciprocal eigenvectors and generalized eigenvectors of R
with eigenvalue Bi. The conditions then become that the eigen-
values Bj of R either be real,

B. = B. . (12)

or occur in conjugate pairs,

By = sg (13)



such that chains of equal length are associated with Bi and Bj.

Sufficiency of Conditions, Degeneracy, and Formal
Solution —-B\Semisimple

That these conditions on the eigenvalues and structure of R
are also sufficient, and that there will then be at least n lin=>
early independent, nonsingular K appropriate to R, can be shown
by exhibiting the approprlate K In so doing, a formal procedure
for their determination is desCribed.

On the change of basis

X = sx' (14)

AN AN

where S is a constant, nonsingular nxn matrix, Eq. (1) becomes
AN

g—%';= 3,13,,35“ (15)
where

& -5, (16
The quadratic form, Eg. (4), becomes

'k = xR % a7
where the metric on the new basis is

K =58 (8)

Since S is constant, K is constant. Accordingly, s'(K') will be
. . A~ N~ . ! . A
invariant under the operation ﬁk if

R'Tk’ = xR (19)
~a AP A v
If so, s(K) will be invariant under the operation R since s(K) is
1ndependent of the basis. ”“
In particular, S can be chosen to be a modal matrix of R —

a nonsingular matrix’, the columns of which consist of the n lin-
early independent eigenvectors and generalized eigenvectors of R
A




(the complete set of eigenvectors, if R is semisimple), with each
chain arranged in the order of 1ncrea51ng rank. Since R is con-
stant, gncan be chosen constant.

Assume first that g‘is semisimple. Then under the transforma-
tion of Eg. (16), if §,1s a modal matrix, R will be diagonalized
on the new basis. Thus o

By 0-—=0
v |
R = 0 By | (20)
: O
| \\ 0
I \
0———— 0 B

n

where B3 ;appearing in the ii position, is the eigenvalue that
corresponds to the eigenvector x(i.,l) appearing as the i'th column
of S. If the By are real or occur in conjugate pairs, the condi-
tioh' on the structure is satlsfled automatically for R semisimple,
and R 't will be obtained from Bk by interchanging the p051tlons

of conjugate pairs of eigenvalues. This interchange of positions
can be effected by a similarity transformation,

r't = p7Ir'p (21)
Falanl AN AN A
where P = B:l is a permutatlon matrix having a 1 in the ii posi-
tion if Bi,= Bl, or in the ij and ji positions if B; is complex
and Bi = Bj. Then Eqg. (19) becomes

R' (PK') = (PK')R’ (22)
Any diagonal matrix will commute with R'. Accordingly, there

will be at least n linearly independent metrics K appropriate to
R ; namely,

AN
a 0——-0
1 |
- 1
' =M o a | (23)
AN ~ 2
I « |
| \ 0
I \
0—=--0 Ya_
where a8ys8y,...,a, are arbitrary constants. Furthermore, if ﬁnhas



repeated eigenvalues, then for each B; = By two additional arbl-
trary constants are introduced, in the ij and ji positions of PK
The p constants, p>n, can clearly be chosen to obtain p llnearly
independent, nonsingular K

Finally, a set of p linearly independent, nonsingular K,
appropriate to R is obtained by transforming back to the orlglnal

basis. Invertlng Eg. (18), we obtain for each K
_ Ty-1 v -1
K= ()7 K (24)

Since S, and §~ are nonsingular, 5\15 also, and the linear indepen-
dence Of the g\follows from that of the K

R Not Semisimple

A

More generally, if § is a modal matrix of R, R is transformed

by Eg. (16) to a qua51d1agonal matrix in the Jordan canonical form,
J1 90T
L) . .
E& = guasidiag (g&,ge,...)— éL o (25)
! \\
] ~
H N

a partitioned matrix in which, corresponding to each chain of
length &;, associated with the eigenvalue B3, there appears an £;x
%4i Jordan block,

Bl 1 o—————— 0

|

1

0 8; 1 !

\ ]

0 0 B.> |

= 1 N
Al i NN ! (26)

NN O

| NN

I N1
R —08

'_l.‘

positioned in the same %: columns of 5; as the chain is positioned
in S. By assumption, either B; is real, in which case
AN

= J3 (27)

1]
or there exists an R.Xli Jordan block of R with complex eigenvalue

Bj = B;, such that

10



= J. (28)

We define a permutation matrix P = E:l partitioned in the
same manner as R . Indexing the positions of the component sub-
matrices by rows and columns of blocks, we put an 2£;x%; identity
block I, in the ii position of P (the position of J. in R') if

i
*
Ji = gi’ or in the ij and ji positions if B; is complex and gi =
J%. Then
]
1o, _ oot L di * g 29
’E‘ B“E‘— 5\. = guasidiag (,."ll’mZ”") (29)

since the positions in B; of each J, and Ji
M

g satisfying Eq. (28)
are interchanged by this permutation.

. +
Let gi be a modal matrix Of,ﬁi' Then

T = * 30
Ji% = 9% (30)
since gr is the Jordan canonical form of JT. Defining
AL ]
Q = guasidiag (Ql,gz,...) (31)

it follows that

rR'To = or'* = gp Ir'p
AN ~n S N AAA AN AN A
or
R' (o~ h) = (gp™hHR' (32)
AN PN AN An o, ANA
Thus
k' =gpt (33)
is a solution to Eqg. (19).
+ Each of the %; eigenvectors and generalized eigenvectors of

‘gi, which make up the columns of Qi’ is specified only within an

11



L]
arbitrary constant. The expressions for Q. and K , then, each
contain n arbitrary constants. Equation 133) reduces to Eg. (23)
for R semisimple, since postmultiplying instead of premultiplying
by Rfl simply permutes the arbitrary constants.

’

Again, if R has more than one Jordan block with the same
elgenvalue, theTe will be further degeneracy in the K, - The
blocks in Q off the qua51d1agonal are not in general square, how-
ever, and The manner in which additional arbitrary constants are
introduced becomes more complicated.

As before, the p constants, p>n, can be chosen to obtain p
linearly independent, nonsingular K ; and these can be trans-
formed back to the original basis by BEg. (24).

Lumped Systems

Similar results are obtained for a lumped linear system,
described by the equation

X, = Mx (34)

w2 Al

where M is an nxn nonsingular matrix relating a state vector at
two generalized ports of the system. We seek metrics K such that

x+Kx = XTKx (35)

oy T Bl

which requires that

MM = x (36)
VA A N L aal
If K is a nonsingular solution to Eg. (36), M is said to be K-

Unitary.

Necessary conditions for M to be K- Unitary are that the
eigenvalues A of M either be of unit magnltude,

*
Xiki =1 (37)

or occur in pairs satisfying the cross-conjugacy relation

*
Ry (38)

]
}_—l

12
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such that chains of equal length are associated with A: and As.
Again these conditions are sufficient to ensure the existence of
at least n linearly independent ﬁ\for which‘%\istﬁrUnitary.

The solution§ to Eq. (36) are obtained as before by first
transforming to M the Jordan canonical form of M. Then by a
similar procedure the K appropriate to M are obtained in the
form of Eq. (33). Thémp031tlon1ng of the blocks in the permuta-
tion matrix depends in the same manner on the self-conjugacy or
cross—conjugacy of the eigenvalues in the associated Jordan blocks.
The 2@ are, in this case, modal matrices of the &Zl)_

These results for a lumped system can be applied directly to
the analysis of a uniform distributed system also, if Eg. (1) is
first integrated. 1If R is nxn and constant, Eq. (1) will have n
linearly independent solutions for x. (The elements of R, in
fact, need only be differentiable with bounded derivatives in the
region of interest — this is known as the Lipschitz condition.)
If any set of linearly independent solutions is arranged as the
columns of an nxn matrix %Jz), then %}z) satisfies

gz.b’l; = —3RM (39)

The solutions to Eg. (39) are known as integral matrices of R.
Since the columns of M(z) are linearly independent, we can £0rm

its inverse at any value zq of z. Thus we can define

1

3&(2 =I§(z)§: (z (40)

z,) 1)
As the postmultlpllcatlon of M(z) is by a constant nonsingular

matrix, gjz z1) is still a non51ngular solution of Eg. (39). It
is a particular integral matrix having the property

M(z =1 (41)

1'21)

ﬂ“z zl) is known as the matricant of the distributed operator R

In view of Egs. (39) and (41),

X(z) = M(z,2)x(z (42)

1)

is a solution to Eg. (1), expressing X in terms of a boundary
value. Equation (42) provides a lumped representation of the sec-
tion of the distributed system between z; and z.

13



By comparing the eigenvalues and structure of R and M(z, zl),
for Baconstant, we could demonstrate the equlvalence of the condi-
tions for R to be K-Hermetian and for M(z,z3;) to be K-Unitary,
with respect to the same number p>n of llnearly independent K
(except that the degeneracy of M may be greater at discrete Values
of z). 1If R is semisimple, M(z z1) will be also, with the same
elgenvectors, the eigenvalues Bi of R are related to the eigen-

values A of M(z z1) by

éBi(z—zl)

Ay = e (43)
The equivalence of Egs. (12) and (13), the conditions on the B8j,
and Egs. (37) and (38), the conditions on the XA;, is clear, and
only at discrete values of z can kl—k if 81#8 . If R is not semi-
simple, the generalized eigenvectors of R and M(z zl) will not be
the same — in fact, the generalized elgenvectors of M(z,z]1) will
depend on z; but the chain of R with eigenvalue B; will be re-

-j8,; (z-2;)

flected into a chain of/ﬁ(z,zl) with eigenvalue e

We do not need to compare details of the theory to see that
we will obtain in fact the same appropriate metrics K by either
approach. For let K be a metric appropriate to M(z Zl)' satisfy-~
ing Eg. (36) for all z. Differentiating, we obtain

.1..

gz wen =G enk e (44)
Substitution of Eg. (39) and its transpose conjugate gives

R 1= O (45)
Since M is nonsingular, we can premultlply by -j (M -l-)"l and post-

multlply by M‘l, yielding Eg. (8), which is the condition for X, to
be approprlate to R. The steps are also reversible, except that
Eq. (44) requires only that MTKM be constant. But since we can
then evaluate it at any value of z, by Eg. (41) this constant
matrix must be,&d which proves the converse.

We note for future reference that the preceding result
applies as well if R is not constant, for any constant solutions
to Eq. (8), or to Eg. (36) if M is the matricant.

Thus any linear, distributed system, described by a system

operator R satisfying the Lipschitz condition, has an equivalent
lumped representatlon described by the matricant M(z zl) of R,

14



the particular solution of Eq. (39) satisfying the boundary condi-
tion, Eg. (41). Only in special cases (including R constant) are
there exact procedures for obtaining this solution. But if the
matricant representation is given, it is simple to obtain R. In-
verting Eq. (39), ~

p-—1 3 % _l
R=31g7;X4 (46)

The operators R and M(z,z;) have the same appropriate metrics,
constant g\satisfying botﬁ Egs. (8) and (36).

We also point out that a lumped system — for constant, non-

singular M, not a matricant — can be represented equivalently by
a uniform distributed system. We write

M =SM S (47)
~M"

where S is a modal matrix of ﬂ( and

M = quasidiag (J;,J5,---) (48)

is its Jordan canonical form. The £i{x%; Jordan blocks are given
by Eq. (26), with \j replacing B;. For each Aj we define a Bji
(which may be complex) as the solution to

-jBiL .

e = Ai’ - < ReBiS il (49)
where L is an arbitrarily chosen equivalent length. We define
L.%%, blocks

i™7i
2.-1
2 .
1 ~jz {=Jz) "~ i:lEli___"____(—JZ) *
J 2! 3! (2. -1)!
i
I
2
0 1 ~5z (232) !
~ —'jBiZ .. I
J. (z) = e 0 0 1 =Jz |
Al I
0 0 0 1< |
| s '
\ \\\\ —jZ
1 ~
0 —————————-———— =T 0 1
(50)

15



These have the property

dgd(z) ~

. -1
J dz :ﬁi

- 1(B)

where giB)is the Jordan block of Eg. (26), with eigenvalue Bj.
Also, J;i is the Jordan canonical form of gi(L), and J; (0) = I2 .
We then define “ry

_ /\_l/\ A
Jitz) = T.7°J.(2)T, (52)

~ ~

where Tj is a modal matrix Of,ﬁi(L)r and J; (z) has the properties

J. (L) = J.
mnl m 1l
(53)
2100 = Io
i
We form
T = quasidiag (T,,T,,...)
M (z) = quasidiag &ll(z)”az(z),...) (54)
1 . .
3& (z) = quasidiag &gl(z)xiz(z),...)
It then follows that
M(z,0) = sM' (z)s L = st M (z)Ts™t (55)
AN o~ on PVVS A en SN W A

is the matricant of a uniform distributed system, with operator

_o. aM -1 -1, -1,-1
R=3gp = EROR e (56)
where
NIS" = guasidiag &2{8),&2(8),...) (57)

and satisfies the boundary conditions
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| gl

M(L,0) = M
AN N
nbﬂ-n(oro) ='}A_

In general, S

of R. If M is semisimple, J; (2)

(58)

is a modal matrix of'%(z,O) andl%:(z) is its
Jordan canonical form only at z = L, but’ggg

is a modal matrix

-3 Blz

= e . Then M'(z) is the

Jordan can6nical form of M(z 0) and S is a modal TMatrix of both

det®tmined quite simply as R, =

M(z 0) and R, In this caSe R is
SR S ’ with the Bi obtained from Eg. (49).

The significance of this result is that we shall be able,
without loss of generality, to develop the subsequent theory with

a focus on distributed systems.

the transformations they describe,
by techniques developed for uniform distributed systems.

Whatever the physical basis for
lumped systems can be treated
At this

point we can observe that the metrics appropriate to M will be

the constant solutions to Eq.
and may therefore be obtained as
in Eg. (56). That these will be
by restricting Refj in each case
Eg. (49) — in fact, we need only

Hermitian

(36)

for the matricant "Of Eg. (55),
the solutions to Eg. (8) for R
all the appropriate K. is ensuTfed
to the interval 1nd1cated in
require that B; = B3 when Alkg=l.

Metrics

Interest has centered on real invariant quadratic forms as
representing real physical guantities conserved by the system.

For s (K) to be real,
K = Kt But the K determined by
ot 1in general be Hermitian.
ian K )

it is reqguired that X be Hermitian — i.e.,

the procedure described will

(Hermitian K do not imply Hermit-

Hermitian X for which R is X- Hermitian or M is K- Unitary

can, however, be formed from any

K. If X is appropriate to the operator, X

set of apgroprlate, nonSlngular
is also appropriate,

ds can be seen by taking the transpose conjugate of both sides of

Eg. (8) or Eqg.
since Egs.

(36) . Moreover,

we can form appropriate metrics

ja. -ja
K =e 'k +e Ikl
nmai M mnl
jb, ib
_ i _ i
lEbi - j(e ml € X

the appropriate K define a space —
(8) and (36) are linear,
priate metrics are appropriate also.

linear combinations of appro-

Thus from the given set K4

(59)
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which will be Hermitian for aj and bj real. Furthermore, real aj
and bj can always be chosen so that‘xa' andwﬁb. are nonsingular.
i i

It may be shown that, of the 2p Hermitian metrics obtained
by Eq. (59) from a maximal set of p linearly independent, appro-
priate Ki, exactly p will be linearly independent. Given a set
of p linearly independent, Hermitian metrics Kni appropriate to
an operator describing a physical system, however, it does not
follow that the physical significance of each of the associated
guadratic forms will be apparent. But the EKhi span a subspace

of the space spanned by the,ﬁi' Linear combilinations E:cighi will

be Hermitian for cj real, will include all appropriate, Hermitian
metrics, and may generate quadratic forms having clear physical
interest. The physical interpretation of the invariant forms of
a system presents a separate problem in every individual case,
beyond the determination of a linearly independent set of mathe-

matically appropriate forms.

By way of example, the system operator R for a uniform trans-
mission line, given by Eq. (3), has two distinct eigenvalues +8,
which, assuming a lossless line, will be real. We therefore
expect that there will be two linearly independent, nonsingular
metrics/ﬁ‘appropriate to 5& and we find as an Hermetian set,

0
0 1 Z0
_ 1 _ 1
K171 K2 < 7 (60)
1 0 0 Z0
We have seen by Eg. (6) that the quadratic form constructed from

K, represents the power. FromhI;2 we obtain

aml
2
_ 1 |v 2y _ 1 2 _ 2
s (K,) = Z(J_Z_g_ﬂu z, |1 )_ 5, (|v+z01| + |v-z 1| )

(61)

which is the sum of the powers in the forward and backward waves.
In this form the conservation law is somewhat unfamiliar. But
the net power s(Kj) can be written also as the difference between
the powers in the two waves, and we can form
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1
Zo
_ 1 =1
K= 7 (BtKy)) = 3
1 Z,
(62)
= -l
0
1 ) 1
=7 &K =37
_1 z,

Then s(K4) and s(K_) are invariant also, and signify that power
is conserved in each wave separately.

We observe further that the metric

_B 0 EJEE 0

- C 0
%0 L/C
= 28 =L =1 =1
3= o X~ = 20 =32
0 Bz, 0 w\}LCJICi 0 L
(63)
where L and C are respectively the distributed inductance and
capacitance per unit length, is also appropriate. Then
1 2 1 2
s(K3) = 5 clv|® + > L|T| (64)

is invariant, and is recognized as the total electric and magnetic

stored energy per unit length on the line.

There may then be any number of invariants of physical inter-
est. Only p can be independent, but these may not give explicitly

the information we seek. We chose the metrics Hermitian, after
all, in order to obtain an explicit physical interpretation. An
examination of the space of Hermitian metrics with a view to

identifying invariants of physical interest can lead also to a re-

cognition of relationships that may not otherwise be obvious. The
same relation will obtain among the s&&) as among the 5( If
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Za.K. =0 (65)

then

,3;-(- )M‘ Ealﬁ 1?12\ _Z ais(ﬁl) =0 (66)
1 i i

1

In this case,

= 2B = 2B
X3 = % Ko = % EFK-) (67)
Then
s(K,) = 28 [s(xy)+s (k)] (68)
w3 W wt M
The stored energy per unit length is thus 7? times the sum of the

powers in the forward and backward waves.

As another example, a lumped shunt susceptance jb is re-
presented on a voltage-current basis by the operator

1 0
T (69)
-jb 1
This operator has appropriate metrics of the form
41 %2
K = (70)
"N
a, 0

One choice of the arbitrary constants, for K1+ again gives the
metric of Eq. (5), indicating that power is Mconserved. Another

choice gives
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K, = (71)

which implies that

s(K,) = Vv (72)

is conserved. The constancy of the voltage across the network
appears here in a somewhat weakened form.

The X of Egq. (70) can be chosen nonsingular, but‘§2 is sin-
gular (as¥are K+ and K- in Eq. (60)). The space of appropriate
Hermetian metrics will include singular metrics, even if we have
gone to the trouble to choose the metrics that span this space
nonsingular, and these may be of interest. The nonsingularity of
the Khj does not ensure the nonsingularity of linear combinations.
Conversely, a linear combination of 51ngular‘5hl can be nonsin-
gular (as in Eg. (67)). In attempting to interpret our results
physically, then, it is not important that we choose Hermitian
metrics by Eg. (59) to be nonsingular, only that we choose a
linearly independent set. Later, however, it will be significant
to know that a nonsingular set exists.

The assumption that Hermitian metrics lead to quadratic
forms that represent real physical invariants can also be mis-

leading. For example, the operator for a lumped shunt resistance
r,
1 0
M = (73)
an
~r 1
has the same repeated eigenvalue A = 1 as the operator of Eqg. (69)
for a lumped shunt susceptance jb. It will, therefore, also have

appropriate Hermitian metrics, even though real power is not con-
served. From one of these,

0 1
K=13 7 (74)

withla\as in Egq. (2), we obtain
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s (K) = % Im (VI¥) (75)

The imaginary part of the complex power — a real quantity, to be
sure — is thus conserved. This example (see also Example 2 of
Section VI) suggests that the special significance attributed to
Hermetian metrics should not be pushed too far.

While such simple systems are adequate vehicles for these
several comments, examples of more interesting systems obeying
conservation laws are given by Pease (refs. 1,2, and 4).

Testing the Operator

The conditions given for the existence of appropriate, non-
singular K are conditions on the eigenvalues and structure of the
system operator. It may be pointed out, however, that it is not
necessary to obtain the eigenvalues, eigenvectors, and generalized
eigenvectors directly, in order to determine whether these condi-
tions are satisfied.

The eigenvalues Bi of R are the roots of the characteristic
equation, mn

_ n n-1 _
lg—BNIWI =a B’ +a ;8 t...+ 2B+ a; =0 (76)

where I is the identity matrix. It is well known that the condi-
tion £Or the roots of an algebraic equation to be real or occur
in conjugate pairs is that the coefficients a; be real, and so it
is not necessary to solve Eg. (76) to obtain this information. In
the case of the lumped-system operator, the eigenvalues Aj of M
will satisfy Eq. (37) or Eq. (38) if and only if M and (Mt)~1l
have the same eigenvalues,and thus the same charadGteristic equa-
tions, and it is only necessary to write these out and compare.
This provides a preliminary check on a necessary existence condi-
tion, relatively simple even for a matrix of large order.

The suitability of the eigenvalues and structure of R or
for the existence of nonsingular solutions to Eg. (8) or Eq. (33
can be determined_by putting the A-matrices RI - AL and R - AI
or Mf - AL and yfl - AEJ in their Smith normal forms. This is
accomplished for a matrix A, defined over a field F, by a seg-
uence of elementary A-matrix transformations defined by the follow-

ing operations on A - Ai:
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1. The interchange of two rows (columns).

2. The multiplication of all elements in a row (column) by
a nonzero scalar in F.

3. The addition, to all elements of a row (column), of the
corresponding elements of another row (column) multi-
plied by a polynomial p(\) over F.

By a systematlc application of these transformations, A - XI can
be put in its Smith normal form,

where each f;(A) is a polynomial in A, with leading coefficient
1, which divides fj+](A); where f31fy +-- o, p = 1,2,...,r, is
the greatest common divisor of all p-square minors of A - A;;

and where r is the rank of A. It can be shown that two matrices
a'and g‘can be related by a&%imllarlty transformation if and only
1f their characteristic matrices A - AI and B - AL have the same
Smith normal form (ref. 5). -~

A similar procedure, in which the complications of operating
on polynomials are traded against the need to examine matrices of
higher order, together with other procedures for obtaining infor-
mation about the operator, will be described in Section III under
"Testing the Kronecker Sum." The degree of £,()), which can be
shown to be the minimum polynomial of/é‘(see Section IV), gives
some measure of the degeneracy in A, but not as much information;
therefore, we will not pursue this point.

ITI. DEVELOPMENT BY KRONECKER-SUM FORMALISM

In the previous section, we discussed conditions for an opera-
tor to have appropriate nonsingular metrics, a formal procedure
for determining the metrics, and the degeneracy of solutions. The
metrics could also be obtained by writing out Egqg. (8) or Eq. (36)
in detail, and solving the resulting set of linear, homogeneous
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equations. Short of solving these equations, we could determine
the rank of the coefficient matrix and thereby the number of
linearly independent solutions we can expect. In general, this
procedure, applied to a set of homogeneous equations, would not
tell us whether matrices formed in a prescribed manner from the
vector solutions could be chosen nonsingular. Moreover, this
would seem to be only an ad-hoc procedure — not necessarily simp-
ler; and not to provide a formal theory of the conservation laws
based on properties of the system operator.

Writing out either of these equations, however, yields a co-
efficient matrix that can be identified as a Kronecker sum (which
incidentally provides an efficient means for obtaining this matrix).
The Kronecker sum has useful properties that will enable us to
obtain expressions for the number of linearly independent metrics,
in terms of the eigenvalues and structure of the system operator,
by this approach also; and more significantly, to express the
conditions on the operator for the existence of nonsingular solu-
tions, and the degree and type of degeneracy in the operator, in
terms of properties of a subspace of the space spanned by the
eigenvectors and generalized eigenvectors of the coefficient

matrix.

It is the number of repeated zero eigenvalues and the number
of linearly independent eigenvectors with zero eigenvalue, to-
gether with certain upper bounds on these numbers, that must be
determined in order to obtain the information we require. The
upper bounds can be determined as the number of repeated zero
eigenvalues and the number of linearly independent eigenvectors
with zero eigenvalue of a related Kronecker sum in the operator.
Matrices of the order n2 x n2 must be examined, but the subspace
spanned by the eigenvectors and generalized eigenvectors with
zero eigenvalue is the simplest to investigate. Moreover, the
Kronecker sums can be compared under a simpler transformation
than that to the Smith normal forms. In any event, a formal equi-
valent to the theory developed in Section II is obtained by this
approach, together with procedures for testing an operator that
can be useful in particular problems and can, in fact, give some-
what more information than the tests described in Section II under
"Testing the Operator." The formal equivalent to the procedure
for obtaining the metrics may be considered to be provided by the
procedure to be described in Section VI.

Kronecker Product

The theory of the Kronecker or direct matrix product, and of
the Kronecker sum, is a standard topic in matrix theory (refs.3,
6, and 7). The direct product is defined and some of its pro-
perties are summarized below.
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The direct product of two nXn matrices %\= (aij) and B = (bijh
denoted by éfﬁl is defined as the n2xn2 matrix e

2318, 218 ——-——- a1 n
I
ax1B 2228 :
: TN I

A X B = 1 \\ | (77)

) LYY | \\ {
| S~
R - Y al

nlam nn'se

Here AXB is written as a
consisting of the matrix
our purposes we restrict
the same order, although

The elements of AXB
MY AM

(A B)lj kh = @

where double indices are

partitioned matrix, with nxn blocks each
B multiplied by an element aj4 of A. For
Bttention to square matrices A and" B of
the theory applies more generally

can be written

b. ' (78)

ik“ih

used to indicate the ordering of the rows

and columns of the direct product, each double index running

through the values 11,12
order.

yeaeeyln,21,...,2n,4..,nl1,...,nn, in that

The direct product is distributive,

(A+B) x C = A X C + B x C
M amn ”n M mn an (79)
A x (B+C) = A X B + A x C
AN SN A MmA e ~A ANN
and associative,
A x (BxC) = (AxB) x C (80)
AAA AN A AN AN AN
but not commutative,
A X B #B XA (81)
AAA AAA AMA A
It also satisfies a matrix-product relation,
(AxB) (CxD) = (AC) x (BD) (82)
AN aMn MR A A oY)
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Let ﬁfr) = (xér)) be an eigenvector of A with eigenvalue Ay, and
y(s) = (y{s) be an eigenvector of B with eigenvalue ug. Define

. . amn .
Ei“frs) as the n2-dimensional vector having components

(r,s) _ _(xr)_(s)

where the double index ij again represents a single index runnin
through values 11 to nn in the same order as before. Then u(r,s?
is an eigenvector of éfgﬂwith eigenvalue Arus. o

If A and B are semisimple, Eg. (83) gives n?2 linearly in-
dependeﬁg eigenvectors, and ﬁfgﬂis semisimple also.

The eigenvalues of AxB, whether or not A and B are semisimple,
are the n2 multiplicativé Combinations ArHg, with @11 multipli-
cities of the Ay and the ug included. If A and B are nonsingular,
their eigenvalues will be nonzero, and AxB will accordingly be
nonsingular also. wn

The Kronecker Sum

The Kronecker sum of two nxn matrices é;and B, which we de-
note by AJ%JE)’ is defined as the sum of twoO diregé products, of
the form

A(A,B) = 5\x + x Eﬁ (84)

I T
M W W N o
where I is the nxn identity matrix. Like the direct product, this
is not a commutative relation,

A(A,B) # A(B,A) (85)
MR AN AN A M DA
1f x(r) is an eigenvector of A with eigenvaluye A,, and y(s)
is an eigenvector of B with eigenvalue ug, then u(rrsT, with™com-
ponents defined by Eg. (83), is an eigenvector OfﬂA}%{&) with

eigenvalue Art+ug.
Again if A and B are semisimple, AxédB) is semisimple also.

In any case thgheigéKValues of éjﬁdé) are the n2 additive combina-
tions Ap+ug, with all multiplicities of the Ay and the ug included.

Degeneracy in A (A,B)
AN AW (W

From the eigenvalues Ay of A and ug of B, it is easy to deter-
mine the number of repeated eigenvalues of A(A,B) equal to Ap+ug,

MW N VN
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for given values of r and s. There will be the same number of
linearly independent eigenvectors and generalized eigenvectors of
A(A B) in chains with this eigenvalue, and these will span an
elgensubspace. We shall have need to know the number of linearly
independent eigenvectors in such an eigensubspace. In general,

if A and B are not semisimple, the derivation is involved, although
the expressions are simple and will be given without proof.

First, however, let us determine the dimensionality of a

given eigensubspace. The indices r and s are assumed to run over
values indexing the linearly independent eigenvectors, or separ-
ate chains, of A and B respectively. For each value of r there

is a chain of waf leﬁ%th ¥, and for each value of s a chain of
B of length %5+ Then, each Ar is of multiplicity 2y, and each
Us is of multiplicity 2%g.

There can be more than one value of r for which the A, are
equal, and more than one value of s for which the ug are equal.
The number my of repeated eigenvalues of A equal to A,, including
multiplicities, is the same for each of these values of r. If we
choose a representative value ¥ from this set of r, we can denote
the number of repeated eigenvalues of A equal to Ay by my, for

each r in this set. Similarly, we dendte the number of repeated
eigenvalues of B equal to ug by mg. Then we can write

:E: 2 = m—
r
Zﬁl = m—
S

S~5

(86)

where by r~T we denote values of r such that A,=)ly, and by s~F
values of s such that ug=ug.

By the property indicated in Section III under "The Kronecker
Sum," the eigenvalue A,+pug of A(A,B), for given values of r and s,
will be repeated L,2%g times. ‘The number of repeated eigenvalues
Artug, for all r~¥ and all s~s, is then

Z Lets Z Z Lo = mgmo (87)
r~r

I'~TY

SaS

S~S

But there is yet another way in which A(A,B) can have repeated
eigenvalues. For distinct values of T, rl#r and of s, 1#52,
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such that AE # AEZ and ugl # ugz, it can be that Azi + ugi =

AE + Mg - Let us choose a representative pair (r,s) from each
2 2

set of ordered pairs (T¥,S) for which the AE + ug are equal. We

denote the pairs in such a set by (F%,8)~(T,s). Then the number of

repeated elgenvalues Ar+ug=Ar+us, counting all r~r¥ and s~5, for
all (¥,s)~(r,s), is

Z Z 2y = Z mom (88)

(F,8)~(T,s) (¥,s)~(T,s)

S~s

Equation (88) gives also the number of linearly independent
eigenvectors and generalized eigenvectors with eigenvalue Al+ug.

Among the eigenvectors will be thel\lﬂl,\(r 'S) defined by Eq. (83),
for all T~F, §~5, (T~8)~(T¥,8). But unless either A or B, is semi-
simple, there will be more. The number of linearly independent
eigenvectors with eigenvalue X§ + ug will be given by

rs
(T, s)~(r s r~T
S~s

where by min (m,n) we denote the smaller of the integers m and n.
Moreover, pPzg will be within the limits

: : min (mf,mg) S == < Z mfrﬂg (90)

(¥,8)~(xr,s) (r,s)~(r,s)
and will attain the_upper limit if and only if £, = &g = 1 for all

r~r, s~5, (¥,8)~(r,s). A necessary, but not sufficient, condition
for pf¥s to attain the lower limit is that there be only one r~r or
only one s~s (i.e., 2; = m_- or 25 = mg) for each (f,§)~(§,§)

We shall be particularly interested in the special case
where my = my for all (¥,8)~(¥,s). The limits then become
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Z m— < p== < Z m? (91)
Y

where the summations are over all ¥ for which there exist § such

that (f,§)~(§,§). In this case the lower limit is attained if
and only if 2; = mf or 2— = mg for each (T,s)~(%¥,s).

A significant feature of these results is that A(A B) can
exhibit considerable degeneracy even when there is no degeneracy
in A or B. This will account for the fact that a nondegenerate
operator can have a number of appropriate metrics.

The Equation AX + XB2=C
Y L 1Y VY
One application of the Kronecker sum is in the solution of
the equation

AX + XBT = C (92)
L) A PO [}
for = (xij), X an nxn matrix. Here 3 = (alj), B, = (bij), and
C ) are Tven nxn matrices, and BT = (bs;) is the rans ose
b g ’ B p

(cl
of B- %y Egq. (78), and with the use of the § functlon,

Equation (92) can be written in detail as

z:aikxkj +Z

” - :E: (3;%83n%%1xPyn) *kn

1h Jh
(93)

Z (A><I+I><B) ,kh Xren = S

M MA T A lj

If we define n2—dimensional column vectors x" and c¢" having com-
ponents xjy and cj4 respectively, where in each case the double
index is treated as a single index running over n? values accord-
ing to the ordering convention adopted at the beginning of this
section, then Egs. (93) are a rendering in detail of the single
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matrix equation

A(A,B) x = c" (94)

;VV\NV\Nv\ A

We shall be 1nterested, in this section, in the nontrivial
solutions of Eg. (94) when c is the null vector. A necessary
and sufficient condition for

ABE w0 (95)
to have a nontrivial solution is that the determinant of A(A B)
vanish, or equivalently, that A(%\B) have a zero elgenvaluefﬂwhlch
may be repeated. If A(A,B) has a zero elgenvalue repeated pp
times, the rank r of A(A B) can be anywhere in the range né-pp<r<
n2 - 1. There will then be n? - r, or between 1 and pp, linearly
independent solutions to Eg. (95). The solutlonslﬁ‘ can also be
thought of as vectors in the null space of A(A,B), the space
spanned by the linearly independent elgenvectors of A(A,B) with
zero eigenvalue. This is a subspace of the zero- elgenvalue eigen-
subspace of A (A, B), the space spanned by the pp linearly 1ndepen—
dent elgenvectors and generalized eigenvectors with zero eigen-
value.

These remarks apply in general to linear homogeneous equa-
tions; but since A(A,B) is a Kronecker sum, we can be more parti-
cular. The number o llnearly independent engenvectors of A(A, Bl
with zero eigenvalue is given by Eq. (89) for Af + ug = 0, and 1s
in the range indicated by Eg. (90).

Furthermore, in our application A and B ,will be forms of the
same operator. This will enable us to develop relations between
Kronecker sums in different forms of the operator that are equi-
valent to relations between forms of the operator described in
Section IT.

Equation (92) has been studied by other approaches (refs.8
and 9), and this is not the only route by which we could arrive
at the results to be obtained in this section. But we shall be
interested more generally in Eq. (92) for C = j(dX/dZ), and we
shall find that the operator in the form A (&, B) can be identified
with the conservation laws in a quite fundamental sense. Express-
ing results in this section in terms of properties of the zero-
eigenvalue eigensubspace of A(A B), then, exhibits them as one
facet of the theory.
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Structure of the Zero-Eigenvalue

Eigensubspace of A(RT,—RT)
A W A

By Egs. (92) and (94), Eqg. (8) can be written in the form

S N
AG-EDE = 9 (96)

Faayl

where 5; is an n2-dimensional column vector formed from the ele-
ments of gain accordance with the convention adopted. The co-
efficient matrix is of the form

* *
TR Lo1dn === ===== N
i
* * _ T I
risL Tooi R, |
] ~ I
AR, -rT) = R'xI-1xR = d N |
A N A AN A Da M 1 ~ |
: AN x ! T
i ~ Tn(n-1)w
i ~
i ~
- * h * T
a7~ T (n-1) naw N,
(97)
where the entries shown are nxn blocks. The nontrivial solutions
to Eg. (96) are the eigenvectors of &ng'ﬁﬁ?) with zero eigenvalue.

If we apply the results given in Section IITI (under "De-
generacy in A(A,B)") in an analysis of AJ%T,-RT) under various
conditions on the eigenvalues and structure ot R, we find that we
can express the results of this analysis in terms of four signifi-
cant parameters. By (r,S)~(r,s), we refer to all ordered pairs
(r,s) such that By = Bz, where ¥ and ¥ index distinct eigenvalues
of R. The expressions in Section III(under "Degeneracy in L(B,B)")
then apply with reference to the zero eigenvalue of A(Bj,—g?).
Otherwise the notation is as explained there. We note that for
the eigenvalues of R to be all real or occur in conjugate pairs,
it is required that the B¥ be all real or occur in conjugate pairs,
and in addition that m— = mg for all (r,s)~(%,8).

The first parameter is the number of repeated zero eigen-
values of A}RT,—RT), which from Eq. (88) is given by
LA B A )
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p_ = Z m (98)

where the summation is over all (r,s) such that Y = B§ , and Mo~
and mg are the number of repeated eigenvalues By and Bg of R, in-
cluding multiplicities, equal to 8y and Bz respectively. ™

The number of linearly independent eigenvectors of A(R+ —RT)

with zero eigenvalue (the number of llnearly independent mefrics
appropriate tolﬁ) from Eg. (89) is given by

p = :E: :z: min (2 ,2.) (99)

(F,5)~(T,S)

S~S

where we drop the subscript on p, since we will be concerned only
with the zero eigenvalue. In Eq. (99),%r and %s are the lengths of
the chains of ﬁ‘with eigenvalues B, and Bg respectively.

That my and mg in Eq. (98), and £, and %g in Eg. (99), can
be interpreted as indicated, although strlctly they refer to the
eigenvalues and chains of 5; and - is easily shown.

The other two parameters are summations over all ¥, indepen-
dent of the character of the eigenvalues of R. The first is de-~

fined by
' 2
P =§ m- (100)
T

Let the values of %, for r~r be denoted by 2 , r~r, and be
arranged such that Ty

L >2r , 1i=1,2,...
i i+l

The fourth parameter is then defined by
p' =E E (2i-1) &, (101)
- i
r i
r~f
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The following relations can then be shown to hold:

. _ _ t
_ _Z= _ min (mz/mg) S PSP, <P,
(r,s)~(xr,s)

p<p' (102)

where

A. p>0 if p>0, for then the set (T, §)~(¥,s) is not empty .
From another point of view, if pp>0, A(RT'RT) is singu-
lar, in which case Eg. (96) has at least ohe nontrivial
solution.

B. p>»n if the eigenvalues of R are real or occur in complex-
conjugate pairs. In this case,p=n if and only if a single
chain is associated with each distinct real eigenvalue
of R and with at least one of each distinct conjugate
pair. If chains of equal length are associated with dis-
tinct conjugate pairs of eigenvalues, this condition re-
guires that a single chain be associated with each dis-
tinct eigenvalue of R.

C. Pp,=Pp if and only if the eigenvalues of R are real or
occur in conjugate pairs.

D. p=p' if and only if the eigenvalues of R are real or
occur in conjugate pairs, and chains of equal length are
associated with conjugate pairs of eigenvalues.

E. p'=pp if and only if E\is semisimple.

F. p'=n if and only if a single chain is associated with
each distinct eigenvalue of R.

Derivable from D and E, and from E and F, respectively,

G. p=pm if and only if the eigenvalues of R are real or
occur in conjugate pairs, and R is semiSimple.

H. p'!=n if and only if the n eigenvalues of R are distinct.
m o

It follows from the above results that, if the eigenvalues
Of;& are real or occur in conjugate pairs,

n<p<p'<p,=Ppy (103)
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The condition on the eigenvalues of R, therefore, is sufficient

to ensure that there will be at least n linearly independent solu-
tions to Eg. (96). There will also then be ol repeated zero eigen-
values A(RT —RT) But if R, and thus AjR - JF) is not semisimple,
it is 1nterest1ng to observe that A(R r~R: ) w1ll have not only
fewer than n2 linearly 1ndependent elgenvectors, but in particular
fewer than pjy associated with the zero eigenvalue. It is charac-
teristic of the class of results we have obtained that a property
that depends on the eigenvalues and structure of a matrix depends
only on the structure of the zero-eigenvalue eigensubspace of a
properly formulated Kronecker sum. This will be illustrated more
adequately as we proceed, after we introduce a slightly different
Kronecker sum than the one we have been considering., We shall
then find that the similarity requirement on R and RT for the
existence of appropriate nonsingular metrics, "which™is equlvalent
to conditions on the eigenvalues and structure of R, can be in

like manner relaxed.

Reformulation of the Theory

We have obtained explicit expressions for the number of lin-
early independent metrics appropriate to a system operator R, under
various conditions on the operator, by an approach based on the
Kronecker theory. We have expressed the results in terms of the
parameters p, pp,p', and py, which are well defined in terms of
the eigenvalues and structure of R. We have also established rela-
tions among these parameters that are equivalent to the conditions
on the eigenvalues and structure of R, including the conditions
under which the metrics can be chosen nonsingular. These results
indicate a dependence of such interior properties of R, and the
character as well as the number of its appropriate metrics, on
conditions on p, pPps P', and py. We have in effect reformulated
our theoretical results in terms of conditions on these parameters,
but the parameters are defined in terms of the interior properties
of R. The unprimed parameters, however, are also well defined in
terms of the structure of the zero-eigenvalue eigensubspace of
A(R* —R ). We would like a comparable interpretation of p' and
pm "in Terms of simpler matrix properties.

In attempting to characfer17e R and its appropriate metrics
in terms of properties of A}R —RT) "We encounter the difficulty
that, while the parameters p ~“and™1 Pm are descriptive of simple pro-
perties of A(RT —RT) p' and pg are values assumed by these para-
meters undeT conditions on R. We are able to bypass this diffi-
culty, however, for we can Show that p' and Pp are also descrip-
tive of simple properties of a different Kronecker sum formed
from R. 1In fact, exactly as p and pp are defined in terms of the
structure of the zero- eigenvalue eigensubspace of A(R* RT) p'
and ppy are defined in terms of the structure of the zero- elgenvalue
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eigensubspace of A(R,-R).
M an

Thus A(R,-R) will have
MY A AN

_ 2
—me (104)
r

repeated zero eigenvalues, where the summation is over all wvalues
of ¥, regardless of the character of the eigenvalues of R. The
number of independent eigenvectors of A(R R) with zero eigenvalue

is
DD, @i-n 4 (105)
E .

1

r~tY

where again the summation is over all r. The upper bounds on the
dimensionalities of the zero-eigenvalue eigensubspace and the null
space of &ij —RT), then, are respectively the dimensionalities

of the zero- elgenvalue eigensubspace and the null space of A(R R)

We are thus able to restate the theory in the following
terms:

The number of linearly independent metrics appropriate
to a system operator R is glven by the dimensionality
of the null space of A(RT T), which is not greater
than the dlmen51onall¥y (>n)‘of the null space of

A (R, R) If the zero-eigenvalue eigensubspaces of
XYR+ R ) and A(R,-R), which contain the null spaces,
are of equal dlmen51ona11ty, there will be at least

n independent metrics. These can be chosen nonsin-
gular if and only if the null spaces are also of equal
dimensionality.

By C and D, under "Structure of the Zero-Eigenvalue Eigen-
subspace of A(R —RT)" in Section III, only if the zero-eigenvalue
elgensubspaces are” ©f equal dimensionality can the null spaces be
of equal dimensionality. The former condition is necessary and
the latter is necessary and sufficient to ensure that the metrics
can be chosen nonsingular.

We have also the following corollaries:
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1. If the zero-eigenvalue eigensubspaces of A(R* —RT) and
A(R,-R) are of equal dimensionality, and the null space
of A(R R) is of dimensionality n, then the null space
of A(R*,—RT) will also be of dimensionality n, and the
n linearly independent metrics can be chosen nonsingular.

2. If the zero-eigenvalue eigensubspaces of A(RT -RT) and
A(R, R) are of equal dimensionality n, then tﬁg null
spaces will also be of dimensionality n, and the n lin-
early independent metrics can be chosen nonsingular.

Moreover, by C, E, and H:

If the zero-eigenvalue eigensubspaces of A(R+ —RT) and
A(R -R) are of equal dimensionality, and The null space
of A(R -R) is of this same dimensionality, then the null
space “of A(R* —RT) will also be of this dimensionality,
and the metrics can be chosen nonsingular.

The condition given in Section ITI for the existence of non-
singular metrics appropriate to R was that R and RJr be similar
matrices,which required that the elgenvalues and Structure of R
satisfy certain conditions. We have replaced these by the condi-
tion that the null spaces of A(R rT —R.) and A(R,-R) be of the same
dimensionality (p=p'). This condltlon can be expressed also in
terms of the rank r= n2—p of A(RT, —RT) and the rank r'=n2-p' of

A(R R), and is that

r =r' (106)

or that A(Rt—RT) and A(R,-R) have the same rank.
A AWM apn M AR M

It is well known that two matrics have the same rank if and
only if they are eqguivalent. (By definition, A and B are eqguiva-
lent if there exist non51ngular matrices B‘and Q such that A—EBQ )
Thus at the sacrifice of an increase in the order of the matrices,
we have replaced the requirement that R and RT be similar (which
requires that o= P' ) with the weaker requlrement that A(R+ —RT)
and A(R, R) be equlvalent

We shall encounter, in the test for semisimplicity described
below, another example of an interior, structural property of R
that can be expressed as the equivalence of two Kronecker sums.

Testing the Kronecker Sum

These results provide a basis for testing an operator to
obtain information about its appropriate metrics — and indeed about
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the eigenvalues and structure of any matrix, apart from our inter-
est in the conservation laws governing a system it might describe
— by determining or comparing the dimensionalities of the null
spaces and zero-eigenvalue eigensubspaces of appropriate Kronecker
sums.

Test I: test for suitability of eigenvalues of R.- By C,
in Section III, under "Structure of the Zero-Eigenvalue Eigen-—
subspace of A(R ,~RT) ," the eigenvalues of R are real or occur
in complex- conjugate palrs if and only if pm—pm. These parameters
could be determined as in Test IV below, and compared. We indi-
cate this approach only for consistency, as a formal alternative
to the much simpler test described in Section II under "Testing
the Operator." That preliminary test, which requires only writing
out the characteristic polynomial of R, is clearly indicated in
any test procedure.

Test IT: determination of the number p of linearly indepen-
dent metrics appropriate to § - Since p is also the dimensional-
ity of the null space of A( —RT), it can be found from the rank

r of A(R"lL RT), for r= n2—p The rank r can be determined, among
other™ ways, by a sequence of elementary transformations deflned
by the following operations:

1. The interchange of two rows (columns).

2. The multiplication of all elements in a row (column)
by a nonzero scalar.

3. The addition, to all elements of a row (column), of the
corresponding elements of another row (column) multi-
plied by a scalar.

By a systematic application of these elementary transformations,
any matrix can be put in its normal form,

I 0
m A
0 0
o LaanS
where I,. is the rxr identity matrix (ref. 5). We obtain p, then,

from the order of I..
SN

Test III: test for suitability of eigenvalues and structure
of R.- By D, the eigenvalues of R are real or occur in conjugate
pairs, and chalns of equal length are a55001ated with conjugate
pairs of eigenvalues, if and only if p=p' — that is, A(R —RT) and
A(R,-R) are equivalent matrices, having the same ranks The *ranks
Of theése matrices can be determined, and compared, by putting each
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in its normal form. Unlike putting R-BI and T—B;\in their Smith
normal forms, this does not involve the manipulation of poly-
nomials and the determination of greatest common polynomial divi-
sors. Furthermore, it is a property of equivalent matrices that
one can be obtained from the other by elementary transformations,
which permits a comparison without reducing each to its normal

form.

Test IV: test for semlslmpllclty of R.- By E, R is semi-
simple if and only if p'=pj. Since pj is the number of repeated
zero-eigenvalues of A(R,-R), in pr1nc1ple Pm could be determined
by finding the term Of "lowest degree in the characteristic poly-
nomial of A(R B) for which the coefficient does not wvanish. Thus,
a measure Of thé number of repeated eigenvalues of R, determined
conventionally by finding the roots of the characteristic poly-
nomial, can be obtained merely by inspection of the characteristic
polynomial of A(R -R) . But while not requiring the solution of
an algebraic equatlon, writing out the characteristic polynomial
(or even determining a sufficient number of the polynomial co-
efficients to apply this test) involves considerable, if straight-
forward, calculation for a matrix of high order. Compared with
the tests we are describing on n2xn2 matrices, it is relatively
simple to do for an nxn matrix, and is therefore indicated above
in the first of these tests. But rather than write out the char-
acteristic polynomial for an n2xn2 matrix, we can avail ourselves
of a more expeditious procedure to test Eafor semisimplicity.

Denote the number p of independent eigenvectors of A(§4—§Q

with zero eigenvalue by p' (A) In all there are pp linearT& in-
dependent elgenvectors and Jeneralized ei envectors with zero
eigenvalue, in chains ﬁ‘lr x(lrz),...x 1,2i) such that
)

AR, -R)x L7 = g

7T S L)

A(R,- R)x(l 12) o g s

NIV\I\M [ JE TN AN

i (i,2.) (i,2.-1)

A(R,-R)x T=x +

MA A AR W Y

From the first two of these equations, we see that

(A (R, -R)1% x 1) = g

M o
A(R,-R)]2 x172) = pr,-r)x D) = o
AN UR A Fat.ld MR M MA  MNA M
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Thus the x(l 1) (i,2)

zero elgenvalue.

and x are eigenvectors of [A(R,—R)]2 with
M A A

There are then p' (A ) independent eigenvectors of [A(R, R)]
with zero eigenvalue, con51st1ng of the eigenvectors and general—
ized eigenvectors of rank 2, with zero eigenvalue, of A(R —R) If
the chains are not all of length i, p! (A)<p (A2) Slmllarly,
there are p'(A3) independent elgenvectors of [A(R,—R)]3 with zero
eigenvalue, dgh51st1ng of the eigenvectors and generallzed eigen-
vectors up to rank 3, with zero eigenvalue, of AJR 5), and if
the chains are not all of length less than 3, p' (K2)<p (A3)
Finally, if %y if the length of the longest chain “associated with
the zero eigenvalue of A(R,~-R), then the null space of [} (R, R)]'Qm
and of all higher powers 8% KYR, R) consists of the entire pﬁ -

dimensional zero-eigenvalue elgensubspace of A(R -~R). We there-
fore have o
5 lm £m+l
' 1 v = 1 = ]
n<p' (M) <p'(A7) <...<p' (A7) =p" (A ) = py (107)
. q ] q
or denoting the rank of [A(R,-R)]™ by r' (A7),
W A AW v
L L +1
n2 - n>r'(A) > r'(AZ) >...> ' (A m) = yt(p ™ ) = n2 - p!
AN M vy ~a m
(108)
. q, _ 2 _ g
since r'g& ) = n p' (A7) .
Since by Eq. (107) p'(A) =P requires that p' (A) p'(A )y, it
follows that R is semisimple "4 f and only if A(R,-R) “and [A(R R)]2
are equlvalent having the same rank. The ranﬁ% Of these"matrices

can be compared as described in the previous test.

The value of p; could be found by determining the rank of
the smallest power of A(R R) having_ the same rank as the next
hlgher power. (Slmllarly, pm—nz—r(Alm) could be found by deter-
mining the rank r(A}m) of the smallest power of A(R +,—RT) having
the same rank as the next higher power; but, if Qm—l, Tt does not
follow that &\is semisimple.)

Test V: test for multiplicity of chains associated with
distinct eigenvalues of R.- By F, there will be a single chain
associated with each distinct eigenvalue of R if and only if p'=n.
As described in Test II, p'=n?-r' can be determined from the rank
r' of A(R,-R).

Ao o

Test VI: test for distinct eigenvalues of R.— By H, the
eigenvalues of &\are distinct if and only if pp=n, and thus by

39



Egs. (107) and (108), if and only if [&Jﬁx—ﬁ)]z is of rank n®-n.

These tests can be applied independently, each assuming no
special conditions on R that must be determined by another test.
But as we would expect from the theory on which these tests are
based, results of some tests can in certain instances be combined
to infer the results of others. If, for example, it is found by
Test I that the eigenvalues of R are real or occur in conjugate
pairs, then Eg. (103) is valid.™ 1f it is further determined,
either by Test V that p'=n, or by Test VI that pyp=n, it follows
that p=p'=n. Then without having determined p directly, we know
that there are n independent metrics appropriate to R, and with-
out Test III that these can be chosen nonsingular. Or if by Tests
I and IV it is determined that the eigenvalues of R are real or
occur in conjugate pairs, and 5hls semisimple, theh' by E and G,
p=p'=pnp >n; and again it is not necessary to apply Test III in
order to conclude that the metrics can be chosen nonsingular.

Lumped Systems

The theory concerning the metrics appropriate to a lumped
system can be reformulated along the same lines that we have dis-
cussed in detail for the uniform distributed system. Using the
technique described in Section III under "The Equation AX+XBT C,
we can write Eqg. (36), the condition for a metric K to e approp—
riate to a lumped-system operator %\ in the form

‘fv\“(MJr,—mT)'l) K" = 0 (109)

) n N A

The relations among the properties of g}%ﬁ,—(%?)_l) and A(M,-M),
the eigenvalues and structure of M, and the number and character
of the nontrivial solutions to Eq (109), are then in complete
parallel with those among the properties of A(R+ —RT) and A(R R),
the eigenvalues and structure of R, and the Tumber  and character
of the nontrivial solutions to Eg. (96) — where again p and p'

are the dimensionalities of the null spaces, and pp and py of the
zero-eigenvalue eigensubspaces, of A(MT-%MT) 1) and AM,-M) res-
pectively. It is only necessary t0 Substitute everywhere, for the
conditions given by Egs. (12) and (13) on the eigenvalues of R,
the conditions of Egs. (37) and (38) on the eigenvalues of M

Alternatively, we could first obtain an equivalent R for the
given M, as discussed under "Lumped Systems" in Section II, and
reduce the problem to the form we discussed in detail.

We have thus far been occupied with a parallel treatment of

the operators R and‘%, or M(z,z1), for constant R, in terms of
equivalent conditions on their eigenvalues and structure, translated
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into identical conditions on certain Kronecker sums, and with
reference to the same set of constant metrics. We shall extend
this parallel through the following section. Later we shall
exploit some dissimilar properties of and M(z,z31), and intro-
duce other metrics whose dependence on the operators does not
exhibit such simple parallels.

IV. THE CONVERSE PROBLEM

Distributed Systems

In the previous sections we addressed ourselves to the prob-
lem of what can be said about the metrics appropriate to a system
operator, for distributed systems of a restricted class, and those
appropriate to a lumped-system operator. Some attention has also
been given to the converse problem, for uniform distributed systems,
of how an operator is determined by its appropriate metrics (ref.l).
A theoretical treatment of this problem is of interest in that it
permits the synthesis of systems governed by specified conserva-
tion laws, and more basically in that it points to the significance
of the conservation laws in defining a system. A critical look
at the published results will show that they are only partly satis-
factory in providing such an alternative approach to system defini-
tion. (See also Section VII.)

Given any two independent, nonsingular, Hermitian, constant
metrics X; and X, the range of operators R for which K1 and K2
are appropriate metrics can be determined. For K1 to be appropri-
ate to R, by Eq. (8) it is necessary and sufficient that glaﬂbe
Hermetian — i.e., that

L£1%.= K
where g is any Hermitian matrix. Thus

= g1y (110)

il nm

g

gives the range of R having K, as an appropriate metric. For X
to be appropriate also, it is necessary and sufficient that

te =
R K2 = KR,
where R is in the range given by Eg. (110). On substitution of

Eg. (110), this relation can be put in the form
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J+H = HJ (111)
onon

N0 fen

where %\is defined by

-1
o= KKy (112)

Equation (111) places a further restriction on H. Thus any opera-
tor R of the form of Eg. (110), where g\is an Hermitian solution
to Egq. (111), will have both 51 and 52 as appropriate metrics.

Equation (110) defines a class of systems with operators
having Kj as an appropriate metric, such that s(Xj) is an invari-
ant. Similarly, R = 55 H, where H is any Hermetian matrix, de-
fines a class of systéms” for which s(K;) is invariant. The class
of systems for which both s(K1) and s(K2) are invariant can be
defined as the intersection of these two classes.

The extent of this intersection, of the range of R, will de-
pend on the choice of K; and Ky, for these may imply other indepen-
dent metrics that must be appropriate to any 5‘in this range. It
is easy to verify that if Kj and K, are appropriate to R, then
every metric of the set ” m m

K = ‘51%“‘*1, m=1, 2,... (113)

is also appropriate. For by Egs. (110) to (113),

RIg = mrTix. g™ 1 = gg®™ 1 = gTg™2 - ... = o)™y
o aaIll Mnml mlm wa VA WA vt prey n
m-1_-1_ _ m-2_-1 -1 m-2_-1_+
e K1 K1 B K X KK H=Kd Ed R
_ _ -1, f.m-1, _ ,.+.m-1
ERERE STSES AP =Nl DA

Since every matrix satisfies its characteristic equation, the nxn
matrices gﬁ"l, for m>n, must be linear combinations of thel% -4,
m=1, 2,...,n. Thus at most Kj,K2,...,Kn (and at least'glhgz will
be linearly independent. The more iﬁaependent metrics implied by

a specified K7 and Kp, the more restricted will be the class of
systems that can be designed that will be governed by the conserva-
tion laws ds(Kj)/dz = 0 and ds(Kp)/dz = 0.
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Specifying additional metrics, other than those implied,
will further restrict the class of systems — ultlmately to R=I,
for which all metrics are appropriate. It is in this sense tﬁ%t
a system is said to be defined by its appropriate metrics.*

Let us, however, look at these results in a little more de-
tail. Let us first ascertain the minimum range of for specified
X1 and K2 With 2 defined by Eg. (112), and recalling the assump-

“ions on Kl and K2, it is easily checked that

H =K H =K (114)
o )

are independent, nonsingular solutions to Eg. (111l). But Eq.(111)
is of the form of Egq. (8), and we saw in Section II +that if an
equation of this form has one nonsingular solution, it has at
least n independent solutions, which can be chosen Hermitian.Thus,
by Eg. (110) there will be at least n independent operators R
having K1 and K2 as appropriate metrics — regardless of the Aumber
of additional 1ndependent metrics KlJm‘l, m=3, 4,..., that are
implied by Kl and K2, and that restrict the range of R.

The number of independent metrics KlJm_ is inversely related
to the degeneracy in J. In the notation Of Section ITI, if differ-
ent subscripts are used to index repeated eigenvalues of J when
these are associated with independent eigenvectors or separate
chains, and if %y is the length of the chain with eigenvalue ng,
the characteristic egquation of % can be written

L
T|_<n—nr> =0 (115)

r

and is of degree n. However, this may not be the polynomial equa-
tion of lowest degree that J satisfies. The latter will be of the
form

max % , Y~r

—IT (n—n;) o =0 (116)

r

where the ny are distinct, and max 2., r~r, is the length of the
longest chain with eigenvalue ny = ny. The polynomial on the left

*The properties of an operator on a wave basis having an approp-
riate metric of canonical form for pairwise coupling have also
been arrived at by an approach beginning with the specification of
the metric (see ref. 10).
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in Eg. (116) is known as the minimum polynomlal of J, and is of
degree not exceeding n. The less degeneracy in J, “the larger

will be the degree of the minimum polynomial, and thus the greater
the number of linearly independent metrics glgﬁ‘l

But applying the results of Sections II and III, we see that
the less degeneracy in g, the fewer linearly independent solutions
H there will be to Eg. (111), and the smaller will be the range
of R This explains the mechanism by which the range of R is re-
stricted by the specification of metrics X7 and Kz that 1mply addi-
tional metrics. The degeneracy in J will be minimum when J is

awn
semisimple with distinct eigenvalues, or when only one chain is
associated with each distinct eigenvalue. The minimum polynomial
will then be the same as the characteristic polynomial, and there

will be n independent metrics in the set K1 Jm' But we have
seen that under this condition, and only then, w1ll there be only
n independent solutions to Eg. (111), and thus a minimum n-dimen-

sional range for R.
m

We also note that
R = J , k=1,2,... (117)
mn

are operators in the range of'ﬁ. For

k-1,7 _ T,k-1 _ t,k=-2 -1 _ T k-2 -1

R S AL A S T S 7Y-S BF-S N AR Y-S LS I

T, k-2

= (J J

(w) K9,
_ k-1
h = K%

k-1, _ T k-1 _ T, k-2 -1 t,k=-2
G5 K= @7 T K s (7 TG T G0 K.
_ - k-1
= s T 82
and so 51 andMI“<2 are appropriate to each gk‘

If the degeneracy in J is minimum, there will be n indepen-
dent Ry. But the range of R is then only n-dimensional, and so
there are no more 1ndependent operators in this range. Further-
more, there will then be n independent metrics K EJJm 1, m=1l,2,...,n
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which are all appropriate to each of thengk, k=1, 2,...,n.

We cannot in general further restrict the range of R selec-
tively by the specification of additional metrics, such as to de-
fine each independent R in this range uniquely in terms of its
appropriate metrics. Any metric will be appropriate to Ri1=I.
Since the degeneracy in J is minimum, R2 g|w1ll have exathy n
independent, appropriate metrics; i. ey only the Kp that we have

already determined. Further degeneracy may or may not appear in
successive powers Of,g For example, if Ro=J is semisimple with
distinct eigenvalues ny, then Rk—Jk 1, k= 3, 4,..., will be semi-

simple with eigenvalues n%‘l. Cléarly the nk-l, for any k>2, may
or may not be distinct (e.g., if ni=1, npz=-1, then n%—nZ 1; but a
situation of this kind is not representative) If succé851ve
powers of J do not become more degenerate, the Ky, m=1,2,...,n,
will be a Maximal set of independent metrics approprlate to each
of the independent operators Ry, k=2,3,...,n. (It is easily
verified that another independent operator can be included, making
a total of n, by adding £‘to any one of the,Bkr k=2,3,...,n.)

If the degeneracy in‘g is not minimum, the range of R will
be greater than n-dimensional. There will still be g independent
operators in this range of the form Rg= Jk- 1, x=1,2,...,9 (2<qg<n),
where g is the degree of the minimum polynomlal of N and the g
independent metrics Km= KlJm 1, m=1, 2,...,9, will be appropriate
to each of these operators. Slnce the degeneracy in g is not
minimum, the total number of independent metrics appropriate to
Ro=4J, will, however, be greater than n. But let Kj be a metric,
approprlate to R2, that is independent of the Km, m=1,2,...,9.
Then

+K. = K.
”m )

5 lg (118)

J
am

Postmultiplying both sides by J, and making use of Eg. (118) in
the result, we obtain

(gﬂz)*}ﬂg. - K. (119)

and, accordingly, K1 is appropriate also to R3—-J2 By extension,
Ki. and thus all of the metrics appropriate to R2, are appropriate
fo each Rk, k=1, 2,...,q. Again, further degeneracy may or may not
appear if successive powers of e (Consider, for example, a semi-
simple J with repeated eigenvalues. The distinct eigenvalues
raised To a given power will normally, but not necessarily, be dis-
tinct.) If successive powers of J do not become more degenerate,
the independent operators Ry, k=2, 3,...,q, (and §2+£) will have

the same set of appropriate metrics.
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We can easily construct examples also of nonsemisimple I
for which the degeneracy does not increase in powers of g And
if the degeneracy in J is not minimum, we can often find a set
of operators in the range of R that are independent of the Rk »
k=1,2,...,9, and which also have a common set of appropriate
metrics. In fact, with R substituted for J, Eg. (119) follows
from Eg. (118) for any % in the range; and whlle the degree of
degeneracy in such an R need not be the same as that in J, inde-
pendent powers of R hav1ng the same degree of degeneracy will
have the same approprlate metrics.

We have indicated how the degeneracy in J determines both
the range of R and the number of metrics 1mp11ed by K1 and K2,
and gives some measure of the extent to which this range can be
subdivided by the specification of additional metrics. We have
found that specifying a set of nonsingular metrics, and stipula-
ting that it be maximal, still in general determines 5‘only with-
in a range.

Furthermore, this approach to system definition, at least in
the form given, lacks generality. The procedure does not apply
to a specified set of metrics that cannot be chosen nonsingular
in linear combination, but which also define a range of operators.
And there is a range of uniform systems that do not obey any con-
servation law. Specifying the constant X appropriate to a non-
uniform-system operator would in general be even less useful for
discriminating among systems. (It does not follow from the exis-
tence of one constant, nonsingular solution to Eg. (8), or Eqg. (36)
for‘% a matricant, that there need be more, if R is not constant
— but we shall see in Section V that the speC1flcatlon of z-de-
pendent solutions to the latter equation will lead to a different
interpretation of the conservation laws governing a range of sys-
tems determined by a variation of this procedure.) The results
of this section suggest that the constant K might play a role in
a more general, exact scheme for system definition; but clearly
something more must be incorporated in this scheme. What this
must be, and its physical interpretation, will become clearer as
we proceed, and the gquestion will be resolved finally in Section

VII.

Lumped Systems

We next ask how the range of lumped-system operators having
specified appropriate metrics can be determined.

A set of constant'§ defines a range of constant R, and there-
by a range of matricants as solutions to Egs. (39) and (41) for R
in this range. A range of lumped system operators M that are K-
Unitary with respect to every K in this set is glven by the range

of matricants evaluated at zj 2 0 and any z = L.
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The metrics of Egs. (5) and (71), for example, define con-
stant R in the range
~ma

a; 0
R = (120)
a2 a1
where aj; and a, are real constants. The range of matricants for

5 in this range is given by

. 1 0
-Ja,z
M (z,0) = e (121)

wm

—jazz 1

Evaluated at z = L # 0, with a; = 2mn/L and aj; = b/L (n=any in-
teger), this is the operator M of Eqg. (69) for a lumped shunt
susceptance Jjb, and for which we found the specified metrics were
appropriate. More generally M describes a lossless system at

the edge of a pass band - recfbrocal and symmetrical if
e jalL =+ 1.

It is interesting to note, as in this example, that certain
metrics may define distributed systems that do not appear to be
of physical interest, but which in turn give rise to lumped
systems of interest.

For a given R, M(L,0) depends on the choice of L. Further-
more, K- Unltary‘ﬂ can be obtained as the matricant, evaluated
at z = L, of 5‘out51de this range, including R(z), and can des-
cribe a variety of physical systems.

The significant point, however, is that for any choice of
z =L # 0, the technique described gives the complete range of
non51ngular M for which the specified K are appropriate. For
given any M in this range -- which could describe a section of
a nonunifo¥m distributed system, a network of lumped elements,
or an arbitrary transformation -- M has an equivalent representa-
tion as a section, of length L, of a uniform system described by
an operator R for which these metrics are appropriate. This
operator will therefore be in the range of constant R defined

by the specified metrics, and M will be its matricant evaluated
at z = L.

Even for a given choice of z = L, there will not be a one-
to-one correspondence between %‘and 5hin their respective ranges.
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As indicated in Section II under "Lumped Systems," and as may
be seen in the above example, there are still an infinite number
of choices for R in its range from which we can obtain a given)%.

But the range of M, which is independent of the choice of
L, is determined by the range of constant R defined by the speci-
fied metrics. Lumped systems can therefore be treated by the
techniques developed for uniform distributed systems. The rela-
tion between operators for lumped and uniform distributed systems
will be indicated more formally in Section VII, and it is parti-
cularly appropriate that they can be so related. For if we
further delimit the range of R, in a manner to be discussed, we
will in general further restrict the range of M; but unless this
is done by specifying additional constant X, we shall not be
distinguishing between operators in this range on the basis of
what can be interpreted strictly as conservation laws. We shall
find that this is a feature of uniform systems in particular.

V. NONUNIFORM SYSTEMS

In this section we generalize some of the previous results
to nonuniform systems, and we introduce some metrics that we
allow to vary with z in a manner appropriate to the conservation
laws governing such systems. We consider two ways in which this
can be done, each proceeding from a different interpretation of
the conservation laws and providing different insights into the
more general problem, but either providing a basis for analysis
or synthesis. By ascertaining what is required of a metric for
it to determine a conservation law, we justify the assumption
that these must be constant for uniform systems as a special case.
But the z-dependent metrics introduced in this section will later
have application in characterizing uniform systems as well.

The condition for a qguadratic form s(K), K constant, to be
invariant under the operation R, was glven in Section II to be
that‘K satisfy

5+§ = KR (8)

A n

This condition was derived without assuming R constant, and
accordingly it applies to both uniform and nonuniform systems.
But the subsequent conditions on R, or on A( +, -RT) and

A (R R), for the existence of constant (non51ngular or singular)
TollUtions to Eq. (8), the expressions for the number of these that
will be linearly independent, and the procedures for obtaining
constant solutions were arrived at on the assumption that 5‘is
constant.
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If R is not constant, the same procedures can be used
formally to obtain solutions to Eg. (8). The number of indepen-
dent solutions will depend as before on the conjugacy properties
of the eigenvalues of R, the dimensionality of the eigensub-
spaces, and their organization into chains of generalized eigen-
vectors -- any or all of which, however, may depend on position.
But if they do not, then on a Jordan basis they will determine
a number p of independent, constant solutions to Eq. (19),

RITKI = KIRI (19)
M LY NA Aan

where p has the same dependency as before on the eigenvalues and
structure of R -- although the eigenvalues, eigenvectors, and
generalized eigenvectors are allowed to vary with z subject to
the above constraints. TIf the eigenvectors and generalized
eigenvectors, and thus the modal matrix S+ are constant, the

R' can be transformed back to the same number p of independent,
Tonstant metrics K on the original basis by Eg. (24). 1In this
case, all of the Theoretical results given for constant R apply
(although, as we shall see, we must be somewhat more careful in
interpreting the conservation laws). The theory developed thus
far, then, applies to a somewhat broader class of operators

than assumed. If the modal matrix is not constant, however,
there is no guarantee that any or all of the K', in any set of
independent situations to Eg. (19), will transform to constant 5(

There will still be the same number p of independent solu-
tions to Egq. (8). But if X = K(z), then apart from any question
of s(K) having the same 1nterpretatlon for all z in terms of

properties of the system, Eg. (8) no longer gives the condition
on 5‘for 5(52 to be invariant. Equation (7) then becomes

tmwe  an dzZ om m o dz

_ s T (aTe _ 2 4R, _ _
_Jn%\ (R/Iv& j 3z KR)X—-O

AR N

For constant 5{ Eg. (122) reduces to Eg. (8).
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If s(K) is invariant, and K = K(z), then
o M~ o

0 _ Tt
x (2)K(z)x(z) = x (z,)K(z;)x(2,) (123)
where z7 is any fixed value of z. By Eg. (42), the matricant
ﬁa(z,zl) must then satistfy
Mi(z,2.)K(2)M(2,2.) = K(z,) (124)
o ! lnM lay ! l AN l

Equations (122) and (124) are equivalent, and one can be obtained
from the other with the use of Egs. (39) and (41).

Equation (122) is of the same form as Eq. (92), with C =
j (dK/dz) chosen as the derivative of the unknown K instead of as
a constant matrix. The derivation of Eg. (94) from Eg. (92) is
not affected if C is of this form, and accordingly Eg. (122) can
be written

pR" Tk = 5 (125)
M A Mmoo 4
This is a differential equatlon in the form of Eq. (1), where in

this case the operator/&(R 15 ) is a Kronecker sum, and k" is an
n2-dimensional state vector formed from the elements of K in the
manner described in Section III. We shall find in Secti®n VII

that k" is a state vector of the system in not only a formal, but

a very real sense. If R satisfies the Lipschitz condition,
&jR* —EF) will also; for "Tts elements are simply elements of -R,
conjugates of elements of R, or sums of these. The same condition
that ensures the existence of a matricant, then, ensures the
existence of n? independent solutions to Eg. (125). The results

of Section III give, for R constant, the number p of independent
solutions that can be chosen constant.

Thus it is only necessary that R satisfy the Lipschitz con-
dition for there to exist n2 1ndependent, invariant forms s(K)
Let us look more carefully, for the general case where 5\15 fot
restricted to be a constant operator, at the conditions for such
forms to represent invariant properties of the system. A system
is defined by the elements rjj of its operator R, and the vari-
ables chosen as components of the state vector x. A consistent
definition of what we mean by any property of the system requires
that it depend in the same way on the rjj and the components of
% everywhere in the system — that is, that it does not depend
explicitly on z. Thus it is reasonable to interpret an invariant
form 5(5) as a conservation law, although g\is a function of z,
ifrﬁ can be written as an explicit function of the rjj(z) only:
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,\If»= E(rij(z)) (126)

Constant K are a special case of Eq. (126), for both uniform
and nonuniform systems. If the rj4 are constant, then conversely
K must be constant to be of this form. Thus we are justified in
having restricted our attention to constant K in considering the
conservation laws governing a uniform system. But for a nonuni-
form system, any solution K(z) to Eq. (122) will meet this require-
ment if, on substitution of z expressed in terms of any of the rjj
by inverting rjij = rjiq§(z), 5}rij) is single valued.

All 5(5) = f(xi,rij) derived in this manner from z-dependent
solutions to Eq. (122) are not likely to be identifiable as famil-
iar invariants such as the power or the energy. But there is no
guarantee either that the p independent invariants we have been
considering for uniform systems will have simple physical inter-
pretations, and Eg. (126) is the logical extension of constant X
to nonuniform systems. Furthermore, if the system is nonuniform,
it is only by an examination of this larger class of metrics that
we can be sure we have identified all the invariants of clear
physical interest. (See example in the following section.)

Although, for constant X, an invariant form s(K) always re-
presents an invariant property of the system, by the same token
we must be careful in interpreting this property if the system is
nonuniform. Suppose, for example, that the system includes a
capacitance that varies in some manner C = Copg(z), g(0) = 1, and
it is determined that (1/2)Cq|V|2 is invariant, where V is the volt-
age. If the system were uniform, g(z) constant, we could conclude
that the stored electric energy is conserved; but in general we

can only say that |V|2 is invariant. (The conservation of elec-
tric energy — the invariance of s (X) =(l/2)C|V[2, where then/§.=
K(z) — would have to be indicated by a z-dependent solution to

£g. (122).) On the other hand, an invariant form(1/2)Re VI* implies
power conservation in any case, for the expression for the power
does not depend on z-dependent parameters of the system.

By introducing a still different set of K(z), we can parallel
for nonuniform systems the technique discusséd in Section IV for
determining the range of operators with specified appropriate
metrics. But first let us point out that the results given there
are not all restricted to uniform systems. If constant X1 and K2
are specified, it is not in fact necessary to choose solutions H
to Egq. (111) to be constant. The arbitrary constants in the gen-
eral Hermitian solution can as well be arbitrary functions of z.
This leads by Eq. (110) to the complete range of systems, uniform
and nonuniform, with operator R having constant X; and K2 as
appropriate metrics. It is not necessary that there be any more
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independent, constant metrics appropriate to an R in this range,
however, if R is not constant — unless there are more in the set

m-1
ﬁlﬁu 1mplled by X1 and.ﬁz'

More generally, if the conjugacy properties of M(z,z1), the
dimensionality of the eigensubspaces, and their organlzatlon into
chains of generalized eigenvectors do not depend on z (except at
discrete values) there will be p linearly independent solutions
to the equation

M (z,2))K(2)M(z,2)) = K(z) (127)

where p depends on the degeneracy in M(z,z]) exactly as was deter-
mined for uniform systems. Note that for any lossless, nonuni-
form system, with at least the one invariant sgﬁ), K constant, re-
presenting the power, there must by our earlier resilts be at

least n independent, nonsingular solutions to Eg. (127) — for there
exists an appropriate nonsingular 5ﬂat every value of z.

Equation (127) implies that
t .
X (z)gﬂ(Z)ﬁ(Z) = X (zl)}i(Z)dzgw(zl) (128)

For a given z, K(z) can be considered a constant metric. The s(K)
formed from solUtions to Eg. (127) will then represent propertles
of the system that are invariant when transformed from z; to z,

but the invariant properties will in general depend on z. But

this suggests that we can define a nonuniform system in terms of
its z-dependent invariant properties in a manner parallel to the
way in which we defined a uniform system in terms of its z-indepen-

dent invariant properties.

Given two independent, nonsingular, Hermetian metrics Kj (z)
and K2(z), we can consider an M(z,z]) for which these are appro-
prlate as represented by an equlvalent uniform line from z; to z.
The system operator for this uniform line can be denoted by Ro(z),
with z as a parameter. Defining

-1
J(z) = K17 (2) K, (2) (129)

we obtain the Hermitian solutions to

3N () = H(2)Z(2) (130)
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Since K1:K2 are nonsingular solutions to Eq. (130), there must
be at Téast n independent solutions. There may not be the same num-
ber at every value of z, and the H(z) may be otherwise not well be-
haved, if the conjugacy properties of the eigenvalues or the de-

generacy in J changes with z. But we can always choose at least

n 1ndependent solutions. We thus determine a range of R (z) by
R (z) = K1 (z) H(z) (131)
a0 mnl mn

Since Ro(z) is the operator for a uniform line, it is straight-
forward to determine its matricant as the solution to the equa-
tion

dﬂbao(z' Izl)

j '«———dz, — = R (Z)M (Z Izl)l M (lezl) = E’\ (132)
where Mg (z',2z3) contains z as a parameter. Corresponding to the
range of Ro(z) is a range of Mg(z',z1) hav1ng K1 (2) andigz(z) as
approprlate metrics, and in partlcular this is true at z' = z.

Thus X1 (z) and Kp(z) are solutions to Eq. (127), with

%(Z'Zl) =}M/10(Z',zl) ey (133)

and the M(z,z]) are lumped representations for the range of sys-
tems defined by these conservation laws. If the H(z) are suffi-
ciently well behaved that the M(z,z31) are differentiable, then
the latter are matricants from which a range of system operators
can be determined by

R(z) = 32 ut (134)

This approach to system definition, in terms of metrics de-
fined by Eg. (127), has the same limitations as the parallel
approach for uniform systems. For this purpose, we shall find
that the metrics defined by Eg. (122) are more significant. These
are quite different definitions of X(2z), for with R given by
Eg. (134), we find that solutions to Eg. (127) must satisfy

A dZM\

RIK - KR = j[% - (MJF)'l d—ﬁm"l] (135)

and so do not in general satisfy Eq. (122). Incidentally, Eqg.
(135) indicates that we cannot obtain or characterize the solutions
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to Eg. (127) by a parallel treatment of R, as we could for uni-
form systems. The solution of Eg. (135) “for X requires the deter-
mination of M, and Eg. (135) thus offers no real alternative to
Eg. (127) in the study of nonuniform systems with this interpre-
tation of the conservation laws.

VI. USE OF DIRECT PRODUCT TO OBTAIN THE CONSERVATION LAWS

The conservation laws governing a distributed, uniform or
nonuniform system can be determined from another property of the
Kronecker product and sum, if the matricant is known. Like the
procedure described in Section III, and unlike that of Section IT,
this procedure does not require determining the eigenvalues, eigen-
vectors, and generalized eigenvectors of M(z,z]), or of R obtained

by Eq. (46). If only R is known, it is still sometimes easier to
determine the matricant (e.g., by the method of projectors (ref.3),
for R constant) than the eigenvalues and modal matrix. TIf R is

not gbnstant but satisfies the Lipschitz condition, the matri-
cant can be determined at least approximately (refs. 3 and 11);and
in either case this procedure offers a method of solution for

Eg. (122), providing additional information beyond that given by the
constantlﬁ.

It is well known that the direct product of the matricants
MA(z z]1) and MB(z z1) of two nxn operators A and B is the matri-

cant of the Kronecker sum A(A B) If, that™ is,
dM
Y .
az - TR Mpa(zy.zy) = I
(136)
dMm
B _ _ _
dz JBng' Mg(zl'zl) o
then, writing MA(z,zl) X MB(z,zl) as %A X %B(z,zl),
LY YA MA N
d (M, >Ms)
e = -JA(A B) [M M ], Ma Uy (z ,zl) =T (137)
M A m
It is easily verified that
d(M, xM_) dM daM
_ MR B “B _ .
dz dz Mg My X gy = TIL(AN,) MM, ¥BML) ]
A N M AN ~”™
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Writing Mp=IMp in the first term and Ma=IMa in the second term,
and with %he Use of Eg. (82) and the définition, Eg. (84), of
A(A,B), Eq. (137) follows directly. Since the eigenvalues of

M XMB are products of the eigenvalues of Ma and the eigenvalues

S MB, and Ma and Mg are nonsingular, MAXMB is also nonsingular —
as requlred 3 a matricant. The bounda¥y Condition follows from
those in Egq. (136) and the definition of the direct product.

We found in Section V that Eg. (122) can be put in the form
of Eq. (125), and that the same condition that ensures the exis-
tence of a matricant for R ensures the existence of n2 linearly
independent solutions k" to Eg. (125). If any set of linearly
independent solutions Ts arranged as the columns of an n2xn2
matrix 5?(2), thenlﬁ"(z) satisfies

dKII . _ T "
3z = TIAR ,-RT) K (138)

By Eg. (137), Eg. (138) is satisfied by

Ktz = Hov B re K2z = 4 (139)
- nu

where M +(z z ) is the matricant of RT and M—R (z,zl) is the
matrlcant of TBT- To relate‘M + to the matrlcant M(z zl) of R,
we take the transpose conjugaf% of both sides of Eg. (39) and
postmultiply by (Mf)_l, to obtain

%i ™t = j,bfl}:(yj)—l (140)
But

am’” (M*)_l -t 94244_; (141)

dz an A dz

51nce(d/dz)[M (M ) l] = dl/dz = Q. Substltutlng Egq. (141) in

Eg. (140) and premultiplying by —(M y~1, we obtain
=z~ IR ) (142)
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Clearly, also, [M (zl,z )] —1 I. Thus (M'I.)-'l is the matricant
of R+ - w
Moo= mhy~1 (143)
A wma
R
A
Similarly, we find that
Moo= M) -1 (144)
w T
-R
mw
Thus
k" = )7t x )7t (145)
mh m I

A nonsingular solution to Eg. (138) is obtained from the
matricant of R by Eg. (145). The columns of K" thus form a set
of n2 llnearly independent solutions k" to Eq. (125).

Any linear comblnatlanz}qk" of these solutions, where the
aj are independent of z, is also a solutlon. An elementary trans-
formation, as defined in Section III under "Testing the Kronecker
Sum," on the columns of K" will result in a new matrix with
columns that are linear comblnatlons of the columns of K" Further-
more, it is a property of elementary transformations that they do
not change the rank of a matrix. The columns of the new matrix,
therefore, will also form a set of linearly independent solutions
to Eg. (125).

All constant solutions to Eg. (125) will be linear combina-
tions of the columns of K", obtained by taking the direct product
of (M )~1 and (MT) . The constant solutions can be obtained by
successive elementary transformations on the columns of K", with
the assurance that after each step we will be left with a set of
linearly independent solutions. A scalar multiplier employed in
an elementary transformation must be chosen independent of z, and
the functional forms of the elements of K" will serve as a guide
in making elementary transformations that will display the constant
k". If the required transformations are not evident, we can sys-
tematically obtain as many constant elements as possible in the
first row. The constant k" must then be linear combinations of
the columns headed by the constant elements, and by elementary
transformations on these we can obtain as many constant elements
as possible in the second row. Continuing in this way, we will
obtain the largest set of linearly independent k" that can be
chosen constant. m
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The constant metrics K appropriate to R are obtained by re-
arranging the elements of The constant 5f as nxn matrices in
accordance with the convention we have adopted. As the constant
solutions to Eqg. (122), they will be the constant solutions to
Eg. (8). The remaining independent solutions K(z) to Eq. (122)
are obtained similarly from the remaining k" (z), and for nonuni-
form systems these may imply additional conservation laws. Note
that if 5‘15 a solution to Egq. (122), + is also; and again the
solutions can be chosen Hermetian.

Example 1:

The operator R for a uniform transmission line, given by
Eg. (3), has the matricant

cos Bz —jZ0 sin Bz
M(z,0) = (146)
~MA
1
-] z— sin Bz cos Bz
0

By Eg. (145), we obtain

sin Bz cos Rz -3 1 sin Bz cos Rz lf sin2 Bz
[}

cos? pz ] z
0

o~
N O |

1 .
s— sin Bz cos (2

32, sin Bz cos Bz cos” Rz sin2 Rz -3 z
0

]

2 2 .1

—)ZO sin [z cos Pz s1n [fz cos rz Jj sin Rz cos Rz

2 . 2 . . .
Z0 sin” Rz —]Zo sin Bz cos fiz JZO sin [z cos fz cos” Bz

(147)
Writing the i'th column

K11
ki =] *12 (148)

ko1

k)2

i
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[1] ” 1 (1] 2 "
we see that(1/4X52+53) gives the elements of ﬁl' and(l/4ZOX51+Zok4)
the elements of‘gz, in Egq. (60). .If/&i and/&ﬁ are replaced res-
pectively by(l/4X§£+5§) and(l/4ZdX£i+Zg£Z), the result of elemen-

tary transformations, it is clear that we cannot then obtain

another column with constant elements by replacing‘§§ or‘§z by a

linear combination a.k%+a k", a

sKata kK, ag and a4 constant.

Example 2:

The operator Bhfor an exponentially tapered transmission line
is of the form

oz
0 rlz(z) 0 wL 0 BZOe
R= =
MmN
B -0z
r21(z) 0 wC 0] g e 0
0
(149)

Z is the inductance per unit length, C=Cge °% is the

capacitance per unit length, Zg =-JL0/C0, and B8 w\’LC = w-ﬂLOCO.

The matricant is

BZ
él/zbz<%os Yz- 1¢g sin Yz) -3 _7Q_él/ZbZ sin vz

where L=L0eG

2y
M(z,0) =
._j i_ e("l/ZbZ Sin YZ e-(l/Z)jZ cos 'Yz+ 1‘_ g Sin YZ
Y2, 2y
(150)

where y2=82— % 02. By Eg. (l145) we obtain 5“, with the column

vectors ¢
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e %% {cos Yz + Lg sin vz 2 b B e %% sin yzlcos vz + L 9sin yz
: 5y vz, Y Y 75 Y
BZ 2
| _9 sin yzleos vz + 1o sin vz 1 - 8_ sin2 Y2
Y 2y Y2
k"= "
~L B2, . ko= 2
-j — sin yzlecos yz + 3 > sin vz = sin” vz
Y 2y Y2
2
EEQ) e’ sin2 Y2 -3 EEQ e’? sin yzlcos vz - Lo sin vz
Y Y 2y
2
B -0z _, 2
_s _B -0z _. lo .. v e sin” vz
j —YZO e sin Yz(cos Yz t 5 > sin yz) (Y 0)
2 s _B : 1o _.
gi sin? yz ] YZO sin yz(%os Yz - 5 7 sin yz
Y k"=
"___ “4
£3 B
2 . . lo _.
B i j —=— sin yzlcos vz - 3 = sin yz
1 —5 sin” vz YZO ( 2y
Y
BZ gz lo _. 2
. 0 gz _. 10 _. e Cos YZ - 5 = sin Yz
3 = e sin yz\cos vz - 3 ¥ sin yz 2 v
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Clearly(l/4)(§£+§§) gives the elements of

0 1
(152)

=
[
FN|

1 0

and so the power is conserved (see Eg. (6)). Successive elementary
transformations, using the systematic procedure we have described,
reveal that there are no constant metrics independent of Ki. But
if we substitute e0Z =(1/BZgp)r1s and e %% =(Zy/8)rp] where these
appear explicitly, and in the same manner seek linear combinations
of the k! that are not explicit functions of z, we find that
(B/Zo) ki + Jok3 + BZpok4 gives the elements of "

rsy jo
- (153)
0 Ty,
from which we can form the Hermetian solution to Eq. (122),
. 1 o
¢ 1235
_ 1 t, 1
K2 = zg &K =3 (154)
. 1 g
N L
Equation (154) implies the invariance of
_ ot _ 1 2 1 2 S e R
s(~132)~'§\52>&—7clv| +§-LIII + 3 7 45 (V¥I-VI¥) (155)

Thus the total stored energy plus ¢/w times the imaginary part of
the complex power is conserved.

If ki and k5 are replaced respectively by(l/4)(§§+§§) and
B/2gk] + Jok3 + BZoki, we are left with kx4 and k4. Two additional
independent conservation laws can be derived from these on sub-
stituting z =(l/0)ln(r12/BZO)or z =(l/o)ln(B/ZOr21)everywhere;
but they do not have an obvious physical interpretation.

60




VII. GROUP REPRESENTATION WITH THE SYSTEM INVARTIANTS

We observed in Section IV that the constant, nonsingular me-
trics appropriate to a system operator define this operator only

within a range. It is also known that the matricant has group
properties, and the group representation it provides is not unique
(refs. 3 and 7). Rather than considering, in the usual manner,

group properties of the matricant as defined by appropriate, non-
singular, constant K, we shall find that the constant X, singular
and nonsingular, are embodied explicitly in another group represen-—
tation. That they are neither necessary nor sufficient for such

a representation, however, will indicate the extent of their con-
tribution in defining a system. We shall see what is needed to
complete the representation, and shall find that it has both phy-
sical interest and some further group properties.

A nonempty set S is said to be a ring under a Lie product
if it is closed under defined binary operations of addition (+)

and multiplication (-), and provided, for arbitrary elements si,
S2,83€85:
1. (sl+s2) + S3 = 84 + (52+s3).
2. sl + 52 = 52 + Sl'
3. There exists an additive zero element speS such that, for
each s.e8, s. + s, = s..
1 1 0 i
4. TFor each sies there exists —sies such that Sy + (—si) =
Sg-
5. sy (52-s3) + 5, * (s3-sl) + 54 ¢ (sl°52) = s (Jacobi
identity).
6. Sq (52+s3) =8, " s, + s, * Sj3-
7. Sp T S, = = (52 . sl).

A multiplicative operation having properties 5, 6, and 7 defines
a Lie product; and an example is given by the commutator of ma-
trices ﬁ and'g, defined by

g - g‘= [ﬁ,B] = AB ~ BA (156)

N o NN

where é%\is interpreted as ordinary matrix multiplication.
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Let S be a subspace of a linear vector space over a field F
such that S is closed under addition over V, where V is a sub-
field of F. (If sj,speS and v3,v2eV, then visj+vysyeS.) Then if
S is a ring under a Lie product, S is said to be a Lie algebra

over V.

Let K be a given constant metric, and let R; be an operator
defined oVer the field F of complex numbers. Let (+) denote
ordinary matrix addition, and the commutator be taken as the Lie
product. Then it is easily verified that S = —-jR, where R is the
range of operators for which ”~ ~

RIK = KR., R.eR (8)
w1l mml Ml
is a Lie algebra over the field V of real numbers. The metric K

thus defines a Lie algebra for S. Furthermore, the spe01f1catlon
of additional independent, constant metrics will define a Lie sub-

algebra.

A nonempty set G, together with a binary operation (o), is
called a group provided:

1. 1If gl,gzeG, then glogzeG (the group property).
2. (glogz) ° gy = gy e (g2og3), for all gl,gz,g3€G
(associativity).

3. There exists an identity element 1eG such that, for all

gigGI
9; ° L=1¢ 9 T 94
4. For every gieG, there exists an inverse g;lsG, such that
-1 -1 _
9; 9y T 9; °9; 7 1

It can be shown that the identity and the inverse must be unique.
If G has only the group property, G is called a groupoid.

Again let K be a given constant metric. Then it is easily
verified that M(z zl), where M is the range of matricants for

which

MT . = K, M.eM (36)
m1 o ~n
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is a group under ordinary matrix multiplication. It is a contin-
uous, finite group, in that it can be parameterized in terms of
continuous values of a finite number of parameters. We have seen
that if M; is a matricant of Rj, then Egs. (8) and (36) have the
same constant solutions K. The metric K thus defines a group M,
and an associated Lie algebra for §. The group M is known as a
Lie group. The specification of additional 1ndependent, constant
metrics will define a Lie subgroup and an associated Lie sub-
algebra. (A rigorous treatment of what is meant by continuous,
finite, and Lie groups is beyond the scope of this discussion.
There are many excellent references; e.g., refs. 12 and 13.)

The group M can also be thought of as a matrix representation
of an abstract group G of transformations characterizing a range
of systems. A homomorphism of a group G into a group or groupoid
H is defined as a mapping g + goa of each geG to h = go, heH, satis-
fying the condition

(glogz) o = (gla) ° (gzu), gl,gzeG (157)

The binary operations for G and H need not be the same. We de-
note by Ga the set of ga for all geG. Then Ga is a subset of H,
and the mapping is onto Ga (i.e., for each heGo, there exists a
geG such that goa = h). It can be shown (ref. 14) that if o is a
homomorphism of a group G into a group or groupoid H, then Ga is
a group. The group Go (or the mapping) is called a representation
of the group G. If the mapping is one-to-one (i.e., gjo = gja
implies g1 = g2), the mapping is called an isomorphism, G and Ga
are said to be isomorphic, and as the groups are essentially the
same, we write G £ Go. The representation is then said to be
faithful. Thus G = M can be interpreted as a statement that M is
a faithful matrix representatlon of an abstract group G. -

Let M' be the set of all nonsingular, differentiable, nxn
matrices Ml(z z1), where Mj(z1,21) = L. Again it is easily veri-
fied that these form a group under matrix multiplication. Then
G' ¥ M' is the abstract group encompassing all systems hav1ng n
degrees of freedom that can be described by a matricant, M' = G'a
is a faithful representatlon of this group, and the set w1th ele-
ments -jRj —(dMl/dz)M , MjeM', is the Lie algebra associated with
Ml

Assume R' = G'B and Q' = G'y are two faithful matrix repre-
sentations of G', where for all 9 eG',

ng = ‘gll EiER'
(158)
9;Y = Qi+ 2i°Q
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and the Pi eP' and [oF, sg_ are of order nxn. Let Ef = G'n be defined
by the mapplng, for all g5 eG',

p— —_ — )

g;n = (giB) * (g;v) =R, x Qs = N.»v N.eN (159)
where BijxQ; is the matrix direct product defined by Egq. (77). By
Eq. (82), and since B and y are homomorphisms, we can write

(9n) = (gpn) = (£1%Q)) Bp¥Q2) = (E1Rp) * (@,Q))

= [(g,8) = (9,8)] x [(g;¥) o (g,¥)]1 =L (g og,) 8]
X [(gl"gz)Y] = (gl°92)n

for arbitrary gj,g3eG'. Thus N' is a groupoid under matrix multi-
plication, and n is a homomorphism of the group G' onto N'. It
follows that N' is a group and a representation of G' — but not
that the representatlon is faithful.

Let G ¥ M be the group defined by some set of constant me-
trics K. G is a subgroup of G', and M = Go is a subgroup of M'.
Then P = GB and Q = Gy, defined by Eq. (158) for gjeG, are sub-
groups of P' and Q' respectively, and faithful representations of
G. This follows Since B and Y are homomorphisms of the group G
into the groups P' and Q', and since the representations P' and
Q' are faithful. Similgrly, n is a homomorphism of G into N';
and N = Gn, defined by Eq. (159) for g;eG, is a subgroup ome'
and a representation (not necessarily falthful) of G.

Now we note that taking the inverse of the transpose conju-
gate of all members of the group M', or the inverse of the trans-
pose, constitutes a one-to-one mapplng of M' onto itself. Further-
more, each of these mappings is a homomorphlsm, since for arbitr-

ary Ml ly,l‘zg];\g" ’
- R -1
an]

() ()
(1) () = [(ea)] ™

If, that is, we define P' = M'p and Q' = M't, where for all M,eM',
nn an ann A ml  Am

It

=
=

—
iz

HES
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©
I

#\~1
M. (M) = P., P.ep'
mal m] LT

-1
i :
(941) = 250 29

then p and v are isomorphisms. Accordingly, fﬁ' = p' and ’DLI“' = Q'.

(160)

K4
[

=

li

We can also write - -
’E\l = Glcx'p = G'B
(161)
Q' = G'aTt = G'y
PAN
and since o is an isomorphism as well, B = ap and y =a1 are iso-

~e

morphisms. Thus G"zlg' and G' = Q', and P' and 9: are faithful
representations of G'. Also, then? P = Mp "“and Q = M1, defined by
Eg. (160) for MjeM, are faithful representatlons of G. It follows

that N' = G'n, where for all 95 eG'
+ -1 T -1
— — — '
9N T Ri X Qi T (3."1) x (ﬁ.’li) Bir Hiel (162)
is a representation of G', and the subgroup N = Gn is a represen-
AN

tation of G.

Thus the 5; of Eq. (145), deriving from all M;eM', are seen

to form a group N' and the K" deriving from MleM a subgroup N,
that are moreovet representatlons respectlvely of G' and G. But
are these representations faithful? Inversion of Eg. (138),

. dR" wy—1 + T

3 &= aw,-RD (163)
shows that K" determines the Kronecker sum (R T - Inspectlon
of Eg. (97) reveals further that if A(Ri R7) = A(R2 RT), then

2 = Ry + al, a real. Thus, while strictly the represen ations

dre not falthful K" determines R within the identity.

The columns 5ﬁ of a given K"eN' or K"eN are generators of n?
1ndependent invariants s (K) that define the system operator with-
in the identity. Not only do a set of constant K define a group,
and a range M of MjeM' that constitutes a matrix representatlon
of the group, but written as k" they are explicitly displayed as
linear combinations of the columns in another matrix representation
of the group. The gystem is not defined by the constant 5\alone,
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and we see that the K(z) are essential to complete the group-
theoretical representatlon. Moreover, this extension of the set
of constant K is not just formalistic; for we have seen that, for
nonuniform systems in general, invariants obtained from the K(z)
reasonably admit of interpretation as conservation laws. From
this point of view, the class of unlform systems can be considered
as an atypical case, represented by a "singular" surface of'u' -
or if in the range defined by the constant K, by a singular sur-
face of N. This singularity represents an 1nab111ty to interpret
the invariants as conservation laws, but not an inability to
obtain pre-images from the representation.

If X"eN (or X"eN') is the matricant of A(R —R ), then —3./\(R’r
—RT) is % meémber of The Lie algebra associated w1th N (or N )
This can be verified directly. To verify closure under commuta-
tion, let -jR3 be the commutator of two operators -JR1 and -jR2
in a Lie algebra defined by a set of constant X,

-JR3 = [-JRy/-JR,! (164)
Then -jR3 1s also in the algebra. It is easily checked that

ot T b T T

~a

(165)

The columns of the matricant of the operator A(R3,j§§), therefore,

with —3A(R§,—R3) obtained by commutation of —jA(RI,—R{) and

—jA(R;,—Rz), will also yield in linear combination the 5f formed

from the specified K. The other conditions for the K to define a
Lie algebra for —jA(R+ —RT), obtained by Eg. (163) for ﬁ"eN, can
likewise be verifiZd’ -

Kronecker sums in this particular form, then, might be des-
cribed as providing a representation of conservation laws onto
their algebra.

If the constant K define a group, what can be said of the

range of systems hav1nq an invariant s(K), where K = K(z)? The
range of matricants will be the solutions to Eqg. (124),
t -
M K(z)M = K(zl) (124)
mMhn e AN
with the boundary condition M(z1,2z1) = I. If we define a binary

operation for arbitrary Ml,m2 in this range by
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M, = M, °M =¥2%£1ﬂ2 (166)

it is readily verified that M3 also satisfies Eg. (124). Thus

the matricants in this range form a group01d under the defined
binary operation. The binary operation is not associative, how-
ever, and the groupoid does not contain, an 1dent1ty element. Thus
it is not a group. The mapping Mi o> (M] )—1 x (MT)"l is to a
groupoid under this same binary operatlon. Agaln it is a homomor-
phism, and the K" form a representation of the groupoid defined
by the invariant s(ﬁ).

By way of example, consider the exponential line of Example 2
in Section VI. The metrics K; and K, (z) of Egs. (152) and (154)
are solutions respectively ) Egs. (36) and (124), for the matri-
cant of Eq. (150). Let us denote this matricant by Mj. But K3
and Ko are also solutions for

él/jcz 0

M., = (167)

0 e%j/ibz

Thus M; and M, are in the group defined by X3, and in the group-
oid defined by K2. We can obtain another member of the group,

e%% [cos Yz - 1o sin vz -3 EEQ sin vz
Zy I Ty
My = MMy =
-5 £ sin vz e 9%lcos yz + = < sin vz
J Y2, Y Y 7y Y
(168)
which satisfies 331&3 = K3, but which is not a member of the
groupoid (M§K2(Z M3 # K2(0)). We can obtain another member of

the groupoid,

67



BZ
e(l/Z)oz(cos Yz + %—% sin yz) j —Y—(—)- e(l/z)Uz sin vz

l
m4—£u/'-[\21\£l m2

B e

7 -(1/2)72 sin vz e—(l/z)ch <cos Yz- Lo sin vz
Y& Y

(169)

which satisfies M KZ(Z)M4 = K2(0), and it is seen that My is also
a member of the group

Members of a groupoid, defined by some K, (z), which are gen-
erated by other members M; and M, that are also members of a group
defined by constant X;, will always be members of the group. For
if M{R1M1 = K3 and M3KijMp = K3, then

.1.
°M.) = +(M l) MK M. MTIM

(M °M5) 35 (M) °M5) = M, MoK MMy M,
= Mo (mT ' K. M- IM. = MIK.M. = K (170)
= MoMyT)  RMp M, = MoK M, = Ky

The role of the conservation laws in defining a linear sys-
tem is thus clear. A system having n degrees of freedom is de-
fined by its n2 independent invariants s(K). The constant K, if
any, including singular K obtained from 1inear combinations of
the columns of the non31ngular matrix K", define a group — the
intersection of the groups defined by the constant K separately.
The K(z), which we have seen in general lead to valid conserva-
tion laws, define a groupoid — the intersection of the groupoids
defined by the K(z) separately. By Eq. (170), intersections of
groups and group01ds define subgroupoids. The intersection of
all groups and groupoids is a subgroupoid that defines the sys-
tem operator within the identity.

The n2 conservation laws cannot, however, be specified arbit-
rarily. A specified K" must be chosen in the group N', which is
a subgroup of the groun formed by taking all p0851b1e matrix

direct products Pji X ©5 of the Lick' and QleQ' (The latter is
a representatlon of a group- theéoretical direct product, a sllghtly
different concept that we have not discussed.) This in turn is a

subgroup of the group of n? x n2 matricants. That is to say, the
groups and groupoids defined by some sets of K are disjoint, and
others are included in one another.
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The M;jeM, the group defined by the specified constant X,

evaluated at zy = 0 and any z = L, is also a group. The mapplng

is a homomorphism of the group with elements Ml(z 0), MjeM, onto
the group with elements Mj (L,0), for all M; (z O)EM It is not
an isomorphism, since for any Ml(L 0), Ml(z 0)8M “there will exist
Mj(z 0)eM, Mj(z 0) # Mj(z,0), ‘duch that My (L, 0) = Ml(L 0) — the
equlvalent dlstrlbuted system for a lumped system is not unique.
Also the mapping depends on the choice of z = L. But for each
z =L # 0, the Mj (L,0), Mj(z,0)eM, will include all nonsingular
matrlces‘ﬁ Unltary w1th'¥espect to the spec1f1ed‘5, and will pro-
vide an unfaithful representation of G. It is thus not necessary
to determine Mji(z, 0) #M that map to the group of,nonsingular K-
Unitary matrices — such pre-images as satisfy Mj (z, O)K(z)M (z,0)=
K(O), with K(L) = K(O), and where the specified K are™ among the
K(O) Furthermore, for each M; (L,0), Mj(z,0)eM, among the Mj(z 0)
eM that map to Ml(L 0) there Will exist matricants of constant
operators R. It is thus not necessary either to determine all
MleM — which requlres obtaining the matricants of all R, including

(z), with -jR in the associated Lie algebra — in ordeT to obtain
The group of lumped system operators Mj (L,0), Mj(z,0)eM, defined
by the specified constant K. "

VIITI. CONCLUSIONS

A distributed system described by a matricant M(z z1) that
is a member of various groups and groupoids, with an operator -jR
in corresponding algebras, can be described also by a matricant
K"(z zl) with the same group properties, and an operator —jA(R+
—g‘) in corresponding algebras. The latter representation ex~
hibits explicitly the metrics that define the conservation laws
governing the system. It establishes and elucidates the signifi-
cance of all the system invariants in characterizing a system.
Their interpretation as conservation laws can be supported also
by physical arguments.

This representation can be viewed as the end result of a
theory developed along parallel lines to existing theory for lin-
ear, uniform, homogeneous systems. It provides new insights and
techniques for the analysis and synthesis of uniform systems in
terms of their conservation laws, and extends to a larger class
of systems.

The representation provides a model that can be studied for
synthesis from any number of specified metrics. Synthesis may in
principle be carried out directly by filling in the columns of
K"(z,2z3), since this is an equivalent matricant for the system.
The problem is that this must be done under the constraint K"eN'
But an intriguing feature of this approach is that one is spec1fy—
ing the system and its conservation laws simultaneously and
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explicitly in forming the matricant K"(z,z3). The constraint
under which this must be done is in fact a fundamental property
of the group that is revealed by this representation. There are
inherent restrictions on the conservation laws that can be obeyed
together by a system.

Mode coupling in systems is a particularly appropriate area
of application for this theoretical model. Considerable physical
insight can be obtained by focusing attention on conservative ex-
changes other than the power exchange between modes. As should
be expected, the physical information to be specified or obtained

is increased if the coupling or the coupled systems are nonuniform,

although the number of linearly independent invariants from con-
stant metrics will in general be fewer. The representation pro-
vides a basis for characterizing, classifying, and synthesizing

such systems.
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